
R语言分类算法之线性判别分析(Linear Discriminant Analysis)
1.线性判别原理解析
基本思想是”投影”,即高纬度空间的点向低纬度空间投影,从而简化问题的处理.在原坐标系下,空间中的点可能很难被分开,如图8-1,当类别Ⅰ和类别Ⅱ中的样本点都投影至图中的”原坐标轴”后,出现了部分样本点的”影子”重合的情况,这样就无法将分属于这两个类别的样本点区分开来;而如果使用如图8-2中的”投影轴”进行投影,所得到的”影子”就可以被”类别划分线”明显地区分开来.
费希尔判别最重要的就是选择出适当的投影轴,对该投影轴方向上的要求是:保证投影后,使每一类之内的投影值所形成的类内离尽可能小,而不同类之间的投影值所形成的类间距离差尽可能大.
对线性判别来说,线将样本点投影到一维空间,即直线上,若效果不明显,则可以考虑增加一个纬度,即投影到二维空间,依此类推.
而二次判别(Quadratic Discriminant Analysis,QDA)与线性判别(Linear Discriminant
Analysis,LDA)的区别就在于投影面的形状不同,二次判别使用若干次曲面,而非直线或平面来将样本划分至相应的类别中.二次判别函数是一种常用的非线性判别函数.
2.在R语言中的应用
MASS包是Modern Applied Statistics with S
的缩写,即S语言在现代统计中的应用。线性判别分析(LDA)主要用到了lda(formula,data,…,subset,na.action)函数,二次判别分析(QDA)则用到了qda(formula,data,…,subset,na.action)函数。
3.以iris数据集为例进行线性判别分析
1)应用模型并查看模型的相应参数
library(MASS) fit_lda1=lda(Species~.,data_train) fit_lda1
2)查看模型的输出结果
fit_lda1[1:length(fit_lda1)]
3)做出模型图
plot(fit_lda1)
plot(fit_lda1,dimen=1)
4)对data_test进行预测,并观察预测结果
pre_ldal=predict(fit_lda1,data_test)
pre_ldal[1:length(pre_ldal)]
5)评测预测结果
table(data_test$Species,pre_ldal$class)error_lda1=sum(as.numeric(as.numeric(pre_ldal$class)!=as.numeric(data_test$Species)))/nrow(data_test)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11