京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言进行中文分词和聚类
由于时间较紧,且人手不够,不能采用分类方法,主要是没有时间人工分类一部分生成训练集……所以只能用聚类方法,聚类最简单的方法无外乎:K-means与层次聚类。
尝试过使用K-means方法,但结果并不好,所以最终采用的是层次聚类,也幸亏结果还不错……⊙﹏⊙
分词(Rwordseg包):
安装:
P.S.
由于我是64位机,但是配置的rj包只能在32bit的R上使用,而且Rwordseg包貌似不支持最新版本的R(3.01),所以请在32bit的R.exe中运行如下语句安装0.0-4版本:
貌似直接在Rstudio中运行会安装失败,而且直接在Rstudio中点击install安装,安装的是0.0-5版本,我就一直失败……
使用:
1. 分词时尽量关闭人名识别
否则会将“中秋国庆”,分为“中”“秋国庆“
2. 可以使用insertWords()函数添加临时的词汇
3. 对文档向量进行分词时,强烈建议用for循环对每一个元素执行segmentCN,而不要对整个向量执行!!!因为我蛋疼的发现对整个向量执行时,还是会出现识别人名的现象……
4. 运行完后请detach()包,removeWords()函数与tm包中的同名函数冲突。
微博分词的一些建议:
1. 微博内容中经常含有url,分词后会将url拆散当做英文单词处理,所以我们需要用正则表达式,将url去掉:
2. 微博中含有#标签#,可以尽量保证标签的分词准确,可以先提取标签,然后用insertWords()人工添加一部分词汇:
文本挖掘(tm包):
语料库:
分词之后生成一个列表变量,用列表变量构建语料库。
由于tm包中的停用词()都是英文(可以输入stopwords()查看),所以大家可以去网上查找中文的停用词(一般700多个的就够了,还有1208个词版本的),用removeWords函数去除语料库中的停用词:
TDM:
生成语料库之后,生成词项-文档矩阵(Term Document Matrix,TDM),顾名思义,TDM是一个矩阵,矩阵的列对应语料库中所有的文档,矩阵的行对应所有文档中抽取的词项,该矩阵中,一个[i,j]位置的元素代表词项i在文档j中出现的次数。
由于tm包是对英文文档就行统计挖掘的,所以生成TDM时会对英文文档进行分词(即使用标点和空格分词),之前Rwordseg包做的就是将中文语句拆分成一个个词,并用空格间隔。
创建TDM的语句为:
变量control是一个选项列表,控制如何抽取文档,removePunctuation表示去除标点,minDocFreq=5表示只有在文档中至少出现5次的词才会出现在TDM的行中。
tm包默认TDM中只保留至少3个字的词(对英文来说比较合适,中文就不适用了吧……),wordLengths = c(1, Inf)表示字的长度至少从1开始。
默认的加权方式是TF,即词频,这里采用Tf-Idf,该方法用于评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度:
1. 在一份给定的文件里,词频 (term frequency, TF) 指的是某一个给定的词语在该文件中出现的次数。这个数字通常会被归一化,以防止它偏向长的文件。
2. 逆向文件频率 (inverse document frequency, IDF) 是一个词语普遍重要性的度量。某一特定词语的IDF,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取对数得到。
3. 某一特定文件内的高词语频率,以及该词语在整个文件集合中的低文件频率,可以产生出高权重的TF-IDF。因此,TF-IDF倾向于保留文档中较为特别的词语,过滤常用词。
由于TDM大多都是稀疏的,需要用removeSparseTerms()函数进行降维,值需要不断的测试,我一般会使词项减少到原有的一半。
层次聚类:
层次聚类的核心实际在距离阵的计算,一般聚类时会使用欧氏距离、闵氏距离等,但在大型数据条件下会优先选择 cosine 距离,及 dissmilarity 函数:
(P.S.要使用cosine方法,需要先安装proxy包。)
层次聚类的方法也有很多,这里选用mcquitty,大家还是多试试,本文给出的选择不一定适合你~
注意:由于R对向量的大小有限制,所以在计算距离时,请优先使用64bit,3.0版本的R~
但如果出现如下报错信息:
"Error in vector(typeof(x$v), nr * nc): vector size cannot be NA
In addition: Warning message:
In nr * nc : NAs produced by integeroverflow"
恭喜你!这个问题64位版本的R也解决不了,因为矩阵超出了R允许的最大限制~我也是遇到同样的问题,所以没办法,只能将原始数据进行拆分,不过我的情况是多个微博账户,但彼此之间的微博分类差不太多,所以可以进行拆分。强烈推荐大家有问题去stackoverflow查找!
(我看到有国外友人说可以用int64包尝试一下,因为tdm其实也是个list,但我没试成功……)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12