京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言生存分析
生存分析涉及预测当特定事件将要发生的时间。它也被称为故障时间分析,或死亡时间的分析。例如,预测天的人患有癌症将生存的数量和预测时间时机械系统是要失败。
在R中包名为 survival 是用来进行生存分析。这个软件包包含了 Surv()函数,这需要输入数据为一个R公式,被选中的变量分析中创建了一个生存的对象。然后我们使用 survfit()函数来创建一个情节进行分析。
安装软件包
install.packages("survival")
语法
对于R中创造生存分析的基本语法是:Surv(time,event) survfit(formula)
以下是所使用的参数的说明:
time 是跟进时间,直到事件发生。
event 表明出现预期的事件的状态。
formula 是预测变量之间的关系。
示例
我们会考虑 “pbc” 出现在上面已安装了生存包中的数据集。它介绍有关患有肝原发性胆汁性肝硬化(PBC)的人的生存数据点中间出现在数据集中的许多列,我们主要关心的字段 "time" 和 "status". 时间代表患者的登记和更早的患者接受了肝移植患者的或死亡之间的事件之间的天数。
# Load the library.
library("survival")
# Print first few rows.
print(head(pbc))
当我们上面的代码执行,它会产生以下结果及图表:
id time status trt age sex ascites hepato spiders edema bili chol albumin copper alk.phos ast
1 1 400 2 1 58.76523 f 1 1 1 1.0 14.5 261 2.60 156 1718.0 137.95
2 2 4500 0 1 56.44627 f 0 1 1 0.0 1.1 302 4.14 54 7394.8 113.52
3 3 1012 2 1 70.07255 m 0 0 0 0.5 1.4 176 3.48 210 516.0 96.10
4 4 1925 2 1 54.74059 f 0 1 1 0.5 1.8 244 2.54 64 6121.8 60.63
5 5 1504 1 2 38.10541 f 0 1 1 0.0 3.4 279 3.53 143 671.0 113.15
6 6 2503 2 2 66.25873 f 0 1 0 0.0 0.8 248 3.98 50 944.0 93.00
trig platelet protime stage
1 172 190 12.2 4
2 88 221 10.6 3
3 55 151 12.0 4
4 92 183 10.3 4
5 72 136 10.9 3
6 63 NA 11.0 3
从上面的数据我们正在考虑的时间和状态我们的分析。
应用 Surv() 和 survfit() 函数
现在,我们应用 Surv() 函数适用于设置上述数据,并创建一个情节用于显示的趋势。
# Load the library.
library("survival")
# Create the survival object.
survfit(Surv(pbc$time,pbc$status==2)~1)
# Give the chart file a name.
png(file = "survival.png")
# Plot the graph.
plot(survfit(Surv(pbc$time,pbc$status==2)~1))
# Save the file.
dev.off()
当我们上面的代码执行,它会产生以下结果及图表:
Call: survfit(formula = Surv(pbc$time, pbc$status == 2) ~ 1)
n events median 0.95LCL 0.95UCL
418 161 3395 3090 3853
在上面的图中的趋势,可以帮助我们预测在若干天结束的生存概率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27