京公网安备 11010802034615号
经营许可证编号:京B2-20210330
使用R拟合分布
几个常用的概率函数介绍
这里,参考R语言实战,以及[Fitting Distribution with R]的附录。
一.认识各种分布的形态
1.1 连续型随机变量的分布
分布,F−分布,Wishart
分布。
先上个图,一睹为快。
以上几个分布之间的关系如以下结构图所示。
[广义线性模型导论3rd edition,p10]
1.1.1 正态分布
正态分布N(μ,σ2)
的密度函数:
正态分布的形态如图。
library(ggplot2)ggtitle
("正态分布密度函数")
正态分布可以衍生出如下的分布。
若Zi∼ i.i.dN(0,1)
,则有
set.seed(123)
data_chisq<-data.frame(x1 = rchisq(200, 10, ncp = 0),
x2 = rchisq(200, 50, ncp =0),
x3 = rchisq(200, 100, ncp = 0))
data_chisq_long<-melt(data_chisq)
## No id variables; using all as measure variables
ggplot(data = data_chisq_long, aes(x = value, colour = variable))+
geom_density()+
ggtitle
("卡方分布密度函数")
1.1.3t−
分布
若
,并且Z和X2独立,则有
set.seed(123)
data_t<-data.frame(x1 = rt(200, 10, ncp = 0),
x2 = rt(200, 50, ncp =0),
x3 = rt(200, 100, ncp = 0))
data_t_long<-melt(data_t)
## No id variables; using all as measure variables
ggplot(data = data_t_long, aes(x = value, colour = variable))+
geom_density()+
ggtitle
("t-分布密度函数")
1.1.4F−
分布
若
,并且X1和X2相互独立,则有
set.seed(123)
data_f<-data.frame(x1 = rf(200,df1 = 10, df2 = 10, ncp = 0),
x2 = rf(200,df1 = 5, df2 = 3, ncp =0),
x3 = rf(200, df1 = 3, df2 = 5, ncp = 0))
data_f_long<-melt(data_f)
## No id variables; using all as measure variables
ggplot(data = data_f_long, aes(x = value, colour = variable))+
geom_density()+
ggtitle
1.1.5Wishart
分布
Wishart
分布是χ2分布在p
维正态情况下的推广。这里对多维情况暂不展开介绍。
1.2 离散型随机变量的分布
1.2.1 伯努利(Bernoulli
)分布
伯努利分布记为Bernoulli(p)
,只有0和1两种取值。概率测度函数如下:
1.2.2 二项(Binomial
二项分布B(n,p)
的可能取值范围为0,1,...,n。其概率测度函数如下:

ggtitle
("二项分布概率分布图")
1.2.3 负二项(NegativeBinomial
)分布
负二项分布。
1.2.4 几何(Geometric
)分布
1.2.5 泊松(Poission
)分布
1.3 指数分布族及其相互联系
1.3.1 指数分布族
[广义线性模型导论3rd edition,p58]
1.3.2 指数分布
1.3.3 Weibull分布
1.3.4 Beta分布
1.3.5 Gama分布
1.3.6 双指数(DoubleExponential
)分布
1.4 其他分布
1.4.1 均匀(Uniform
)分布
1.4.2 柯西(Cauchy
)分布
1.4.3 对数正态(Lognormal
)分布
1.5 可视化探索的步骤举例
首先,通过直方图,经验累积分布形态等来观察数据的分布形态。
#产生一组服从N(10,2)分布的随机数
二.模型选择
三.参数估计
模拟估计
矩估计
极大似然估计
四.拟合优度指标
五.拟合优度检验
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12