
使用R拟合分布
几个常用的概率函数介绍
这里,参考R语言实战,以及[Fitting Distribution with R]的附录。
一.认识各种分布的形态
1.1 连续型随机变量的分布
分布,F−分布,Wishart
分布。
先上个图,一睹为快。
以上几个分布之间的关系如以下结构图所示。
[广义线性模型导论3rd edition,p10]
1.1.1 正态分布
正态分布N(μ,σ2)
的密度函数:
正态分布的形态如图。
library(ggplot2)ggtitle
("正态分布密度函数")
正态分布可以衍生出如下的分布。
若Zi∼ i.i.dN(0,1)
,则有
set.seed(123)
data_chisq<-data.frame(x1 = rchisq(200, 10, ncp = 0),
x2 = rchisq(200, 50, ncp =0),
x3 = rchisq(200, 100, ncp = 0))
data_chisq_long<-melt(data_chisq)
## No id variables; using all as measure variables
ggplot(data = data_chisq_long, aes(x = value, colour = variable))+
geom_density()+
ggtitle
("卡方分布密度函数")
1.1.3t−
分布
若,并且Z和X2独立,则有
set.seed(123)
data_t<-data.frame(x1 = rt(200, 10, ncp = 0),
x2 = rt(200, 50, ncp =0),
x3 = rt(200, 100, ncp = 0))
data_t_long<-melt(data_t)
## No id variables; using all as measure variables
ggplot(data = data_t_long, aes(x = value, colour = variable))+
geom_density()+
ggtitle
("t-分布密度函数")
1.1.4F−
分布
若,并且X1和X2相互独立,则有
set.seed(123)
data_f<-data.frame(x1 = rf(200,df1 = 10, df2 = 10, ncp = 0),
x2 = rf(200,df1 = 5, df2 = 3, ncp =0),
x3 = rf(200, df1 = 3, df2 = 5, ncp = 0))
data_f_long<-melt(data_f)
## No id variables; using all as measure variables
ggplot(data = data_f_long, aes(x = value, colour = variable))+
geom_density()+
ggtitle
1.1.5Wishart
分布
Wishart
分布是χ2分布在p
维正态情况下的推广。这里对多维情况暂不展开介绍。
1.2 离散型随机变量的分布
1.2.1 伯努利(Bernoulli
)分布
伯努利分布记为Bernoulli(p)
,只有0和1两种取值。概率测度函数如下:
1.2.2 二项(Binomial
二项分布B(n,p)
的可能取值范围为0,1,...,n。其概率测度函数如下:
ggtitle
("二项分布概率分布图")
1.2.3 负二项(NegativeBinomial
)分布
负二项分布。
1.2.4 几何(Geometric
)分布
1.2.5 泊松(Poission
)分布
1.3 指数分布族及其相互联系
1.3.1 指数分布族
[广义线性模型导论3rd edition,p58]
1.3.2 指数分布
1.3.3 Weibull分布
1.3.4 Beta分布
1.3.5 Gama分布
1.3.6 双指数(DoubleExponential
)分布
1.4 其他分布
1.4.1 均匀(Uniform
)分布
1.4.2 柯西(Cauchy
)分布
1.4.3 对数正态(Lognormal
)分布
1.5 可视化探索的步骤举例
首先,通过直方图,经验累积分布形态等来观察数据的分布形态。
#产生一组服从N(10,2)分布的随机数
二.模型选择
三.参数估计
模拟估计
矩估计
极大似然估计
四.拟合优度指标
五.拟合优度检验
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10