
使用R拟合分布
几个常用的概率函数介绍
这里,参考R语言实战,以及[Fitting Distribution with R]的附录。
一.认识各种分布的形态
1.1 连续型随机变量的分布
分布,F−分布,Wishart
分布。
先上个图,一睹为快。
以上几个分布之间的关系如以下结构图所示。
[广义线性模型导论3rd edition,p10]
1.1.1 正态分布
正态分布N(μ,σ2)
的密度函数:
正态分布的形态如图。
library(ggplot2)ggtitle
("正态分布密度函数")
正态分布可以衍生出如下的分布。
若Zi∼ i.i.dN(0,1)
,则有
set.seed(123)
data_chisq<-data.frame(x1 = rchisq(200, 10, ncp = 0),
x2 = rchisq(200, 50, ncp =0),
x3 = rchisq(200, 100, ncp = 0))
data_chisq_long<-melt(data_chisq)
## No id variables; using all as measure variables
ggplot(data = data_chisq_long, aes(x = value, colour = variable))+
geom_density()+
ggtitle
("卡方分布密度函数")
1.1.3t−
分布
若,并且Z和X2独立,则有
set.seed(123)
data_t<-data.frame(x1 = rt(200, 10, ncp = 0),
x2 = rt(200, 50, ncp =0),
x3 = rt(200, 100, ncp = 0))
data_t_long<-melt(data_t)
## No id variables; using all as measure variables
ggplot(data = data_t_long, aes(x = value, colour = variable))+
geom_density()+
ggtitle
("t-分布密度函数")
1.1.4F−
分布
若,并且X1和X2相互独立,则有
set.seed(123)
data_f<-data.frame(x1 = rf(200,df1 = 10, df2 = 10, ncp = 0),
x2 = rf(200,df1 = 5, df2 = 3, ncp =0),
x3 = rf(200, df1 = 3, df2 = 5, ncp = 0))
data_f_long<-melt(data_f)
## No id variables; using all as measure variables
ggplot(data = data_f_long, aes(x = value, colour = variable))+
geom_density()+
ggtitle
1.1.5Wishart
分布
Wishart
分布是χ2分布在p
维正态情况下的推广。这里对多维情况暂不展开介绍。
1.2 离散型随机变量的分布
1.2.1 伯努利(Bernoulli
)分布
伯努利分布记为Bernoulli(p)
,只有0和1两种取值。概率测度函数如下:
1.2.2 二项(Binomial
二项分布B(n,p)
的可能取值范围为0,1,...,n。其概率测度函数如下:
ggtitle
("二项分布概率分布图")
1.2.3 负二项(NegativeBinomial
)分布
负二项分布。
1.2.4 几何(Geometric
)分布
1.2.5 泊松(Poission
)分布
1.3 指数分布族及其相互联系
1.3.1 指数分布族
[广义线性模型导论3rd edition,p58]
1.3.2 指数分布
1.3.3 Weibull分布
1.3.4 Beta分布
1.3.5 Gama分布
1.3.6 双指数(DoubleExponential
)分布
1.4 其他分布
1.4.1 均匀(Uniform
)分布
1.4.2 柯西(Cauchy
)分布
1.4.3 对数正态(Lognormal
)分布
1.5 可视化探索的步骤举例
首先,通过直方图,经验累积分布形态等来观察数据的分布形态。
#产生一组服从N(10,2)分布的随机数
二.模型选择
三.参数估计
模拟估计
矩估计
极大似然估计
四.拟合优度指标
五.拟合优度检验
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26