京公网安备 11010802034615号
经营许可证编号:京B2-20210330
变量选择之SCAD算法
本文提出了一种用于同时达到选择变量和预测模型系数的目的的方法——SCAD。这种方法的罚函数是对称且非凹的,并且可处理奇异阵以产生稀疏解。此外,本文提出了一种算法用于优化对应的带惩罚项的似然函数。这种方法具有广泛的适用性,可以应用于广义线性模型,强健的回归模型。借助于波和样条,还可用于非参数模型。更进一步地,本文证明该方法具有Oracle性质。模拟的结果显示该方法相比主流的变量选择模型具有优势。并且,模型的预测误差公式显示,该方法实用性较强。
SCAD的理论理解
在总结了现有模型的一些缺点之后,本文提出构造罚函数的一些目标:
罚函数是奇异的(singular)
连续地压缩系数
对较大的系数产生无偏的估计
SCAD模型的Oracle性质,使得它的预测效果跟真实模型别无二致。
并且,这种方法可以应用于高维非参数建模。
SCAD的目标函数如下:
SCAD的罚函数与$theta$的(近似)关系如下图所示。
可见,罚函数可以用二阶泰勒展开逼近。

Hard Penality,lasso,SCAD的系数压缩情况VS系数真实值的情况如下图所示。
可以看到,lasso压缩系数是始终有偏的,Hard penality是无偏的,但压缩系数不连续。而SCAD既能连续的压缩系数,也能在较大的系数取得渐近无偏的估计。
这使得SCAD具有Oracle性质。
SCAD的缺点
模型形式过于复杂
迭代算法运行速度较慢
在low noise level的情况下表现较优,但在high noise level的情况下表现较差。
SCAD的实现
SCAD迭代公式
SCAD的目标函数如下:
时,罚函数可以用二阶泰勒展开逼近。
从而,有如下迭代公式:

根据以上公式,代入迭代步骤,即可实现算法。
SCAD的R实现
##------数据模拟--------
library(MASS)
##mvrnorm()
##定义一个产生多元正态分布的随机向量协方差矩阵
Simu_Multi_Norm<-function(x_len, sd = 1, pho = 0.5){
#初始化协方差矩阵
V <- matrix(data = NA, nrow = x_len, ncol = x_len)
#mean及sd分别为随机向量x的均值和方差
#对协方差矩阵进行赋值pho(i,j) = pho^|i-j|
for(i in 1:x_len){ ##遍历每一行
for(j in 1:x_len){ ##遍历每一列
V[i,j] <- pho^abs(i-j)
}
}
V<-(sd^2) * V
return(V)
}
##产生模拟数值自变量X
set.seed(123)
X<-mvrnorm(n = 200, mu = rep(0,10), Simu_Multi_Norm(x_len = 10,sd = 1, pho = 0.5))
##产生模拟数值:响应变量y
beta<-c(1,2,0,0,3,0,0,0,-2,0)
#alpha<-0
#prob<-exp(alpha + X %*% beta)/(1+exp(alpha + X %*% beta))
prob<-exp( X %*% beta)/(1+exp( X %*% beta))
y<-rbinom(n = 200, size = 1,p = prob)
##产生model matrix
mydata<-data.frame(X = X, y = y)
#X<-model.matrix(y~., data = mydata)
##包含截矩项的系数
#b_real<-c(alpha,beta)
b_real<-beta
########----定义惩罚项相关的函数-----------------
##定义惩罚项
####运行发现,若lambda设置为2,则系数全被压缩为0.
####本程序根据rcvreg用CV选出来的lambda设置一个较为合理的lambda。
p_lambda<-function(theta,lambda = 0.025){
p_lambda<-sapply(theta, function(x){
if(abs(x)< lambda){
return(lambda^2 - (abs(x) - lambda)^2)
}else{
return(lambda^2)
}
}
)
return(p_lambda)
}
##定义惩罚项导数
p_lambda_d<-function(theta,a = 3.7,lambda = 0.025){
if(abs(theta) > lambda){
if(a * lambda > theta){
return((a * lambda - theta)/(a - 1))
}else{
return(0)
}
}else{
return(lambda)
}
}
# ##当beta_j0不等于0,定义惩罚项导数近似
# p_lambda_d_apro<-function(beta_j0,beta_j,a = 3.7, lambda = 2){
# return(beta_j * p_lambda_d(beta = beta_j0,a = a, lambda = lambda)/abs(beta_j0))
# }
#
#
# ##当beta_j0 不等于0,指定近似惩罚项,使用泰勒展开逼近
# p_lambda_apro<-function(beta_j0,beta_j,a = 3.7, lambda = 2){
# if(abs(beta_j0)< 1e-16){
# return(0)
# }else{
# p_lambda<-p_lambda(theta = beta_j0, lambda = lambda) +
# 0.5 * (beta_j^2 - beta_j0^2) * p_lambda_d(theta = beta_j0, a = a, lambda = lambda)/abs(beta_j0)
# }
# }
#define the log-likelihood function
loglikelihood_SCAD<-function(X, y, b){
linear_comb<-as.vector(X %*% b)
ll<-sum(y*linear_comb) + sum(log(1/(1+exp(linear_comb)))) - nrow(X)*sum(p_lambda(theta = b))
return (ll)
}
##初始化系数
#b0<-rep(0,length(b_real))
#b0<- b_real+rnorm(length(b_real), mean = 0, sd = 0.1)
##将无惩罚时的优化结果作为初始值
b.best_GS<-b.best
b0<-b.best_GS
##b1用于记录更新系数
b1<-b0
##b.best用于存放历史最大似然值对应系数
b.best_SCAD<-b0
# the initial value of loglikelihood
ll.old<-loglikelihood_SCAD(X = X,y = y, b = b0)
# initialize the difference between the two steps of theta
diff<-1
#record the number of iterations
iter<-0
#set the threshold to stop iterations
epsi<-1e-10
#the maximum iterations
max_iter<-100000
#初始化一个列表用于存放每一次迭代的系数结果
b_history<-list(data.frame(b0))
#初始化列表用于存放似然值
ll_list<-list(ll.old)
#######-------SCAD迭代---------
while(diff > epsi & iter < max_iter){
for(j in 1:length(b_real)){
if(abs(b0[j]) < 1e-06){
next()
}else{
#线性部分
linear_comb<-as.vector(X %*% b0)
#分子
nominator<-sum(y*X[,j] - X[,j] * exp(linear_comb)/(1+exp(linear_comb))) +
nrow(X)*b0[j]*p_lambda_d(theta = b0[j])/abs(b0[j])
#分母,即二阶导部分
denominator<- -sum(X[,j]^2 * exp(linear_comb)/(1+exp(linear_comb))^2) +
nrow(X)*p_lambda_d(theta = b0[j])/abs(b0[j])
#2-(3) :更新b0[j]
b0[j]<-b0[j] - nominator/denominator
#2-(4)
if(abs(b0[j]) < 1e-06){
b0[j] <- 0
}
# #更新似然值
# ll.new<- loglikelihood_SCAD(X = X, y = y, b = b0)
#
#
#
# #若似然值有所增加,则将当前系数保存
# if(ll.new > ll.old){
# #更新系数
# b.best_SCAD[j]<-b0[j]
# }
#
# #求差异
# diff<- abs((ll.new - ll.old)/ll.old)
# ll.old <- ll.new
# iter<- iter+1
# b_history[[iter]]<-data.frame(b0)
# ll_list[[iter]]<-ll.old
# ##当达到停止条件时,跳出循环
# if(diff < epsi){
# break
# }
#
}
}
#更新似然值
ll.new<- loglikelihood_SCAD(X = X, y = y, b = b0)
#若似然值有所增加,则将当前系数保存
if(ll.new > ll.old){
#更新系数
b.best_SCAD<-b0
}
#求差异
diff<- abs((ll.new - ll.old)/ll.old)
ll.old <- ll.new
iter<- iter+1
b_history[[iter]]<-data.frame(b0)
ll_list[[iter]]<-ll.old
}
b_hist<-do.call(rbind,b_history)
#b_hist
ll_hist<-do.call(rbind,ll_list)
#ll_hist
#
iter
##
ll.best<-max(ll_hist)
ll.best
##
b.best_SCAD
##对比
cbind(coeff_glm,b.best,b.best_SCAD,b_real)
##----------ncvreg验证-----------
library(ncvreg)
my_ncvreg<-ncvreg(X,y,family = c("binomial"),penalty = c("SCAD"),lambda = 2)
my_ncvreg$beta
my_ncvreg<-ncvreg(X,y,family = c("binomial"),penalty = c("SCAD"))
summary(my_ncvreg)
my_ncvreg$beta
###用cv找最优的lambda
scad_cv<-cv.ncvreg(X,y,family = c("binomial"),penalty='SCAD')
scad_cv$lambda.min
mySCAD=ncvreg(X,y,family = c("binomial"),penalty='SCAD',lambda=scad_cv$lambda.min)
summary(mySCAD)
ncv_SCAD<-mySCAD$beta[-1]
##对比
myFinalResults<-cbind(无惩罚项回归=coeff_glm, GS迭代 = b.best,
GS_SCAD迭代 = b.best_SCAD, ncvreg = ncv_SCAD,真实值 = b_real)
save(myFinalResults,file = "myFinalResults.rda")
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27