京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R爬虫之京东商城手机信息批量获取
人手一部智能手机的移动互联网时代,智能手机对很多人来说,它就像我们身上生长出来的一个器官那样重要。如果你不能对各大品牌的『卖点』和『受众』侃上一阵,很可能会被怀疑不是地球人。
今天我们来探索一下,如何从『京东商城』爬取各大品牌的手机信息。
1.预备知识
R爬虫需要掌握的技能包括:
基本的网页知识,如html,XML文件的解析
分析XPath
使用网页开发工具
异常捕捉的处理
字符串的处理
正则表达式的使用
数据库的基本操作
不过不要担心,目前只需要掌握前三项技能,即可开始练习。
前三项技能的掌握可以参考 Automated Data Collection with R 一书。正常情况下,一天之内大致即可掌握。
2.页面分析
(待完善)
3.提取各大品牌的链接
#### packages we need ####
## ----------------------------------------------------------------------- ##
require(stringr)
require(XML)
require(RCurl)
library(Rwebdriver)
setwd("JDDownload")
BaseUrl<-"http://search.jd.com"
quit_session()
start_session(root = "http://localhost:4444/wd/hub/",browser = "firefox")
# post Base Url
post.url(url = BaseUrl)
SearchField<-element_xpath_find(value = '//*[@id="keyword"]')
SearchButton<-element_xpath_find(value = '//*[@id="gwd_360buy"]/body/div[2]/form/input[3]')
#keyword for search
keywords<-'手机'
element_click(SearchField)
keys(keywords)
element_click(SearchButton)
Sys.sleep(1)
#test
get.url()
pageSource<-page_source()
parsedSourcePage<-htmlParse(pageSource, encoding = 'UTF-8')
## Download Search Results
fname <- paste0(keywords, " SearchPage 1.html")
writeLines(pageSource, fname)
#get all the brand url
Brand<-'//*[@id="J_selector"]/div[1]/div/div[2]/div[3]/ul/li/a/@href'
BrandLinks<-xpathSApply(doc = parsedSourcePage, path = Brand)
View(data.frame(BrandLinks))
BrandLinks<-sapply(BrandLinks,function(x){
paste0(BaseUrl,"/",x)
})
save(BrandLinks,file = 'BrandLinks.rda')
4.访问每个品牌的页面,抓取每个品牌下的商品链接
##############Function 1 #################################3##
### 对各品牌的手机页面进行抓取 ########3#
getBrandPage<-function(BrandUrl,foreDownload = T){
#获取某品牌搜索页面
post.url(BrandUrl)
Brand_pageSource<-page_source()
#parse
parsedSourcePage<-htmlParse(Brand_pageSource, encoding = 'UTF-8')
#get brand name
BrandNamePath<-'//*[@id="J_crumbsBar"]/div[2]/div/a/em'
BrandName<-xpathSApply(doc = parsedSourcePage, path = BrandNamePath, fun = xmlValue)
#Save the page
BrandPageName<-paste0(BrandName,'_PageSource.html')
#Create a file
if(!file.exists(BrandName)) dir.create(BrandName)
# save
writeLines(text = Brand_pageSource, con = paste0(BrandName,'/',BrandPageName))
# get the product page url
#path
Brand_AllProductPath<-'//*[@id="J_goodsList"]/ul/li/div/div[4]/a/@href'
#url
Brand_AllProductLinks<-xpathSApply(doc = parsedSourcePage, path = Brand_AllProductPath)
# #remove some false url
# FalseLink<-grep(x = Brand_AllProductLinks,pattern = 'https',fixed = TRUE)
# Brand_AllProductLinks<-Brand_AllProductLinks[-FalseLink]
# add a head
Brand_AllProductLinks<-str_c('http:',Brand_AllProductLinks)
#save and return the url
save(Brand_AllProductLinks,file = paste0(BrandName,'_AllProductLinks.rda'))
return(Brand_AllProductLinks)
}
# test
BrandUrl<-BrandLinks[1]
getBrandPage(BrandUrl)
#get all the links
Brand_ProductLink<-list()
for(i in 1:length(BrandLinks)){
Sys.sleep(10)
Brand_ProductLink[[i]]<-getBrandPage(BrandUrl = BrandLinks[i])
}
#clean the links
All_ProductLink<-lapply(Brand_ProductLink,function(x){
TrueLink<-grep(x = x,pattern = 'http://item.jd.com/',fixed = TRUE,value = FALSE)
return(x[TrueLink])
})
# save the links
save(All_ProductLink,file = 'All_ProductLink.rda')
5.访问每个商品页面,提取有用信息
我们初步提取如下指标:标题(Title),卖点(KeyCount),价格(Price),评论数(commentCount),尺寸(Size),后置摄像头像素(BackBit),后置摄像头像素(ForwardBit),核数(Core),分辨率(Resolution),品牌(Brand),上架时间(onSaleTime).
#################################################
######## Function2 :访问每个商品页面,提取有用信息 ########
Product<-function(ProductLink){
post.url(ProductLink)
Sys.sleep(4)
# get the page
Product_pageSource<-page_source()
#parse
Parsed_product_Page<-htmlParse(Product_pageSource, encoding = 'UTF-8')
# get title,,key count,price,CommentCount and so on
#PATH
TitlePath<-'//*[@id="name"]/h1'
KeyCountPath<-'//*[@id="p-ad"]'
PricePath<-'//*[@id="jd-price"]'
commentCountPath<-'//*[@id="comment-count"]/a'
SizePath<-'//*[@id="parameter1"]/li[1]/div/p[1]'
BackBitPath<-'//*[@id="parameter1"]/li[2]/div/p[1]'
ForwardBitPath<-'//*[@id="parameter1"]/li[2]/div/p[2]'
CorePath<-'//*[@id="parameter1"]/li[3]/div/p[1]'
NamePath<-'//*[@id="parameter2"]/li[1]'
CodePath<-'//*[@id="parameter2"]/li[2]'
BrandPath<-'//*[@id="parameter2"]/li[3]'
onSaleTimePath<-'//*[@id="parameter2"]/li[4]'
ResolutionPath<-'//*[@id="parameter1"]/li[1]/div/p[2]'
Title<-xpathSApply(doc = Parsed_product_Page,path = TitlePath,xmlValue)
KeyCount<-xpathSApply(doc = Parsed_product_Page,path = KeyCountPath,xmlValue)
Price<-xpathSApply(doc = Parsed_product_Page,path = PricePath,xmlValue)
commentCount<-xpathSApply(doc = Parsed_product_Page,path = commentCountPath,xmlValue)
Size<-xpathSApply(doc = Parsed_product_Page,path = SizePath,xmlValue)
BackBit<-xpathSApply(doc = Parsed_product_Page,path = BackBitPath,xmlValue)
ForwardBit<-xpathSApply(doc = Parsed_product_Page,path = ForwardBitPath,xmlValue)
Core<-xpathSApply(doc = Parsed_product_Page,path = CorePath,xmlValue)
Name<-xpathSApply(doc = Parsed_product_Page,path = NamePath,xmlValue)
Code<-xpathSApply(doc = Parsed_product_Page,path = CodePath,xmlValue)
Resolution<-xpathSApply(doc = Parsed_product_Page,path = ResolutionPath,xmlValue)
Brand<-xpathSApply(doc = Parsed_product_Page,path = BrandPath,xmlValue)
onSaleTime<-xpathSApply(doc = Parsed_product_Page,path = onSaleTimePath,xmlValue)
# 整理成data frame
mydata<-data.frame(Title = Title,KeyCount = KeyCount, Price = Price,
commentCount = commentCount, Size = Size, BackBit = BackBit,
ForwardBit = ForwardBit, Core = Core, Name = Name,Code = Code,
Resolution = Resolution,
Brand = Brand, onSaleTime = onSaleTime)
#save the page
FileName<-paste0('Product/',Brand,Code,'_pageSource.html')
writeLines(text = Product_pageSource,con = FileName)
#return the data
return(mydata)
}
# test
quit_session()
start_session(root = "http://localhost:4444/wd/hub/",browser = "firefox")
load(file = 'All_ProductLink.rda')
ProductLink1<-All_ProductLink[[40]][1]
testData<-Product(ProductLink = ProductLink1)
#定义tryCatch
mySpider<-function(ProductLink){
out<-tryCatch(
{
message('This is the try part:')
Product(ProductLink = ProductLink)
},
error=function(e){
message(e)
return(NA)
},
finally = {
message("The end!")
}
)
return(out)
}
## loop
# get all data
ProductInformation<-list()
k <-0
for(i in 1:length(All_ProductLink)){
for(j in 1:length(All_ProductLink[[i]])){
k<-k+1
ProductInformation[[k]]<-mySpider(ProductLink = All_ProductLink[[i]][j])
}
}
# save my data
MobilePhoneInformation<-do.call(rbind,ProductInformation)
View(MobilePhoneInformation)
save(MobilePhoneInformation,file = 'MobilePhoneInformation.rda')
nrow(na.omit(MobilePhoneInformation))
View(MobilePhoneInformation)
最终,获得800多行的信息,除去缺失值,剩下600多行数据,还不赖。 最后的数据可以在这里获得。
不过,数据还需要进一步清洗方能进行分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24