京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SAS信用评分卡之如何优雅的检查共线性
这次的文章跟大家分享在建模中,选择确定变量之后要检查的一个多重共线性。理论上,如果你在选择变量是使用proclogistic中的stepwise即逐步回归,是不会出现多重共线性的,但是毕竟stepwise选择出来的变量你也自己也要按照业务筛选啊,那这是多重共线性还是要检查的,还有就是,因为变量到这一步都是分好段的,所以变量就是4-7组的样子,如果不是相关性很强的话,都是不会太相关。但是出于我们是一个尽责的员工考虑,还是要做这个检查的。
检查可以有两方面,如果你对共线性不熟,那么就用先用相关性试试,但我不保证相关性过关了就没有共性了,只是几率会降低一些。
1
1、相关性的检查。
proccorrdata=sashelp.classout=aa;
run;
输入代码可以得出结果:
主要看后面三行,与对应的变量之间的相关系数有木有超过0.8,假设超过0.8那就是存在相关性,在模型中就以为这两个变量只能留一个,不能两个同时进入变量。如果在out=aa不加参数,就默认是输出的是皮尔逊相关系数和简单描述统计。
nosimple--不进行简单的描述性统计;
pearson--皮尔逊相关系数;
spearman--斯皮尔曼相关系数;
best=number--将相关系数降序排列;
kendall--肯德尔相关系数;
hoeffding--霍夫丁相关系数;
求一个变量与其他变量的相关:
proccorrdata=sashelp.classout=aapearson;
withAge Height;
varWeight;
run;
结果:
以上提到的相关系数在“信用风险评分卡研究”这本书中的预测力指标这一章有相关的解释,可以看哪一章的内容。过多的定义我这里就不一一敲出来了。
2
2、共线性的检查。
procregdata=sashelp.classoutvif;
modelAge=Height Weight/tolvifcollin;
run;
结果:
请看,条件指数这一列,最后一个数是56.54682,大于30。看到倒数两列,偏差比例都非常高,断定height与weight有共线性。对这个例子不明显,我们再来一个:
这是一个建模数据,显示是没有多重共线性的。
再来一个:
这是我在网上偷的图,可以看到最大的条件指数为12.56.与30还有一点差距,但所对应的截距与x1的方差分解比例(就是sas中的偏差比例)分别是92.4%和67.3%,均超过了50%,可以认为两者之间存在较强的共线关系。而条件指数为4.3所对应的变量x3和x5的方差分解比例分别是56.5%和47.4%,也可以大致认为两者之间存在一定的共线关系。
在这里必须要说一个规则就是,判断是否有多重共线性,首先看条件指数是否大于30,在30的这一行看过去,看哪个的变量的方差分解比例大于50%,大于50%的那几个变量就是有存在共线性。
其次,对于条件指数没有大于30的,也可以看他们的方差分解比例是否大于50%,接近50%或者大于50%也可以认为可能有共线性,如果你对共线性的要求比较高,那就只看第一条规则,不需要看这条规则。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06