京公网安备 11010802034615号
经营许可证编号:京B2-20210330
基金遇上大数据,是机遇还是噱头
2013年以来,随着移动互联网的发展和成熟,互联网金融逐步兴起和深化,基金行业也开始利用大数据进行投资分析。为了深入了解大数据在基金行业的应用情况,数据猿近日对富国基金信息技术部经理李强进行了专访。
大数据基金“噱头”实足,更多应用场景需要探索
有过基金购买经历的人都知道,我们在购买公募基金产品时,常常看到带有诸如医疗、航天、军工、电子信息等行业性文字的基金。事实上,这类基金属于投资于特定行业主题的基金,与新兴的“大数据基金”定义完全不同。
大数据基金是通过互联网海量数据,如搜索数据、网站点击数据和网上消费数据等,结合专业量化分析模型为投资行为提供决策依据。大数据更多作用在于为投资提供决策依据。
目前,市场上总计出现22只大数据基金,今年以来,这22只大数据基金平均业绩却是下跌4.61%,其中,仅5只取得正收益,4只基金跌幅甚至超过10%,表现十分不如人意。与诞生之初的喧闹截然不同,如今的大数据基金市场,相较2015年出现的爆发式增长,似乎陷入“瓶颈”。
李强告诉数据猿记者,大数据在“大数据基金”中的真正价值应该在于通过数据分析产生预测和决策能力,在弱式有效市场的基本分析过程中获取信息优势,洞察各类行为数据、市场变化、对手动向,从而帮助投资者取得超额收益。
其中,两个问题不得不强调:
一、数据风险。市场上的大数据虽然有“量”,但在某些场景下数据信息显得“言过其实”,其真实性和有效性有待考证,因此如何获取真实数据是首要问题。
二、模型风险。如果投资者过分依赖模型可能带来一系列问题,所以需要思考并综合运用“专家法”+“模型法”,理性做出投资决策。
从目前来看,大数据在各行业的应用已经很多,但是基金行业对大数据的应用似乎刚起步。虽然市场很热闹,各基金公司都在跟进大数据在金融行业的业务场景,可是大数据技术真正与业务端相结合,找准业务场景和发展方向还需要一段过程,这也是整个基金行业在思考和探索的问题。
国内智能投顾风起云涌,但发展尚处初级阶段
随着互联网和计算机技术不断进步,在国外,包括高盛、摩根等在内的巨头投行,对大数据、人工智能都青睐有加,而且取得了不少成功案例,比较明朗的应用当属智能投顾;在国内,银行、证券公司、基金公司、第三方互联网机构等都纷纷押宝智能投顾,探索人工智能在财富管理领域的实践与应用,美国Wealthfront、Betterment、Future Advisor更是成为国内智能投顾的模仿对象。
从市场发展来看,目前国内智能投顾的实现采用了大数据采集和处理技术,通过模型计算为客户和证券打上相应标签,随之进行智能匹配与推荐。
在这个过程中需要解决的问题是:首先,通过大数据获得的客户信息需要能够支持投顾系统构建准确的无差异曲线,并且能够进一步随着市场变化预测投资者的风险偏好变化,从而动态调整无差异曲线;其次,要利用大数据以及金融模型准确地构建市场证券的收益和风险关系,并且能够利用大数据技术在市场中动态捕捉突发异动,及时地向客户提示风险。
基于这两项要求,投顾系统需要综合客户的风险和市场证券的风险收益特征,针对每个客户提供个性化投资建议并进行实时跟踪调整,帮助客户在能够承受的风险程度下实现最大化收益。
智能投顾究竟是不是真的能够让客户赚钱呢?李强表示,大家可以乐观,但要保持谨慎。行业风口下催生的智能投顾目前还处于探索阶段,距离能够给投资人带来稳稳的收益还有差距。
智能投顾可以通过不断的模型训练实现自主学习,持续利用大数据进行回测与修正,自动组合并推荐金融产品,做到“电脑”代替“人脑”,发挥集约化效应为每个客户“配备”适合于个体的投资经理、研究分析师,低成本而又科学的投顾专家团队服务。但是在这一发展过程中,基金公司可能会面临兼具金融与大数据技术的人才稀缺、基于海量数据如何及时准确提取有效数据以及面对机器取代人力的革命,客户与行业的认识与接受程度如何等难题。
另外,目前在多方发展智能投顾的势力中,互联网企业对智能投顾的发展成绩显著,领先一筹。就原因而言,一方面,互联网公司对市场发展的敏感度和反应速度最快。由于没有所谓的传统业务和保底业务做保障,互联网公司安身立命的关键就在于对技术和市场的预判能力,如果市场主流企业都在做这件事情,它就必须也在这方面加入投入,否则就将失去生存之道。另一方面,互联网公司紧迫感往往强于传统金融机构,更舍得花钱。传统金融机构对于试错的容忍度相对较低,造成决策与投入相对更为保守。
在采访最后,李强告诉记者,“大数据”这个词非常时髦,不断被热炒。但企业首先要认识到什么样的问题需要用数据解决?如何才能用好数据?避免进入“为了大数据而大数据”的惯性思维。
基金行业利用大数据的根本目的是获得信息优势。从投资角度看,信息优势带来的即是超额收益。所以金融机构对于“阿尔法”的渴望或许可以理解为对于大数据追求的初衷。资产管理公司如何利用好数据、构建科学动态的投资模型,这是未来大数据基金产品与智能投顾类服务的核心竞争优势。在这个过程中,数据是原料,模型是载体,人才是根本。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07