
大数据时代 每家公司都要有大数据部门吗
在大数据时代 每家公司都要有大数据部门吗?如果这个问题换做是:在电气时代,每家公司都要有个发电厂吗?是不是会更好回答一些?
事实上每一种重大技术的出现,都会对产业产生大的变化。在蒸汽时代,采矿机采用蒸汽机后,会带来生产效率的极大提升,而轮船加上蒸汽机,再也不需要靠风才能航海了。在电气时代,电灯代替了蜡烛,电报代替了快马送信,而报纸也被广播和电视所侵蚀。
可以说是现有产业加上新技术,形成了新产业。
我们回过头来看这两次工业革命,生产蒸汽机的企业只有少量几家,而发电的企业在美国也只有通用电气和西屋电气。并不是每家企业都要从事这些基础设施的研发和生产,更多的是对新技术加以应用,发挥新技术带来的价值。
在IT领域,软件刚出来时,可以说是计算和存储完全混杂在一起。有人尝试将计算硬件进行分离,歪打正着成就了Intel。有人尝试将存储系统分离,因而有了Oracle。
Intel和Oracle固然伟大,但它们的价值更多的还在于有广大的企业采用了这些新的技术,在具体的行业中,产生了更大的价值。
同样,云计算这种理念固然是好,但如果每家企业都建立自己的云计算中心,从资金和人力投入上,一定是不划算的,更严重的问题是做不到最优。相反,有了AWS和阿里云这样的云计算提供商,让中小企业更便捷的进行创新应用。
回到题目中的问题,在大数据时代,每家公司都要有自己的大数据部门吗?结论也不能下的太武断。
早在2008年,云计算的概念刚刚兴起,百度内部出现了两拨势力。一拨要从零开始打造自己的大数据底层技术,把MapReduce、GFS、BigTable这些组件都要实现一遍,结果花了两三年时间,也没能稳定运行。
而另外一拨势力,直接采纳开源的Hadoop生态,很快在公司内应用起来。而我当时做的日志统计平台,也是采用了Hadoop。但百度的数据规模毕竟太大了,所需的集群规模,开源版本根本撑不住,于是不得不改写Hadoop,这样就和开源的版本渐行渐远,等到后来再也合不到一起了。
曾经有一年多的时间,我们部门新设计和实现和底层的存储及计算系统,结果发现开源的版本也差不多实现到了同样效果。虽然许多内部的人觉得我们怎么总重复造轮子,但我明白还是需求使然,你面临的需求相对领先,但也没有领先到像Google那样提早5年。
但对于小公司来说,则完全没必要从零开始做,还是要尽量用开源的产品。
整个Hadoop生态,要比我2008年刚用的时候,要成熟很多。那个时候我们去拿开源的版本,编译部署,一个新手可能两周都不一定能正常的运转起来。而现在下载一个Cloudera发行版,两个小时就可以正常跑任务了。
与此同时,又面临了新的问题,因为大数据平台牵涉到数据的采集、传输、建模存储、查询分析、可视化等多个环节,而开源领域只是一些组件,于是各家公司都在纷纷打造自己的大数据平台,这就像Oracle之前,各家都在打造自己的存储系统。这显然不是一件性价比高的事情。
有市场需求,就会有满足相应需求的公司诞生,于是就诞生了一堆提供大数据服务的公司。
由于这一新领域还处于早期,这些创业公司所能提供的服务并不会特别的完善,要么是以项目制的方式运转,要么是提供专门应用场景的服务。
这样,对于一些企业来说,这些创业公司提供的服务,似乎自己也能实现,那何不干脆自己做?
这创业一年多以来,我看到了太多的公司在打造自己的数据平台,但做的还不够完善。不管是技术实力还是人力投入上,都有点力不从心。如果选用了这些第三方数据服务,那岂不饭碗被抢了?
可我要说的是,饭碗早晚都会被抢,只是时间早晚的问题。这里只需要问一个问题:我所做的数据平台,是不是其他公司也是类似的需求?如果是的话,那肯定也有其他公司做着类似的事情,做的东西会大同小异。
那么,就会出现专门的公司,来解决这种通用的需求。因为这些公司专注于解决这一块问题,所以会更加专业,并且舍得投入。而对于需求公司来说,除非自己转型去专门做大数据平台,不然在投入上,肯定不是一件性价比很高的事情。与其如此,不如及早侧重于自己的核心业务,关注应用需求本身。
那对于企业来说,在大数据时代,应该怎么做呢?我的建议是三点:
首先,要拥抱大数据技术。
新的重大技术出现,都带有颠覆性。一不小心,就会被革命。但也不是说企业已有的业务不用搞了,都来搞大数据吧。
在大数据这件事上,还是要从需求出发,而不是从大数据出发。
有人会问我,我有了一些数据,给我讲讲怎么能发挥更大的价值。坦率来说,许多时候不了解业务场景,很难提出建设性的意见的。
相反,我们要先看在企业满足客户需求的时候,还有哪些重大问题没有解决好,如果采用了大数据技术,是不是可以更好的解决?如果有这样的点,那非常好,就勇于去尝试。如果没有,那就继续学习大数据的知识,再等待这样的场景出现。
其次,企业要有懂大数据的人。
这种人不一定是全职的,但至少是可以将企业的业务和大数据技术结合起来的人。这种人不一定对大数据技术本身很懂,但善于使用新技术。
如果企业现在还没有,并且还没招到。可以去培养一个头脑灵活,乐于学习新技术的人。如果抛开大数据系统的实现挑战,理解大数据的应用场景,那难度会降低不少。
最后,要善于利用第三方服务。
能用第三方服务解决的,就尽快去尝试。在竞争激烈的情况下,通过采用新技术,获得技术红利,跑的更快。就像爱迪生当年发明白炽灯后,那些更早将白炽灯用于工厂的企业家,更有可能提升工人的工作效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01