
数据分析的三层需求
为什么有的报表好用,有的报表不好用,有的企业会做一堆乱七八糟的报表,最近经常会思考这些问题。有人说数据分析,为了开源节流,这个没有错,今天我从另外一个角度解读。数据分析,是为了应对风险(说明:风险与机会是一起的。PMI中将其共同列为风险管理,本文所有风险与机会同义),开源节流的每一次操作每一个节点,也是风险。
企业经营,风里来雨里去,免不了碰到大大小小的机会和风险,抓住机会躲避风险是每个企业以及个人的毕生追求。
PMI中将风险归为以下几类:
已知的已知风险
未知的已知风险
未知的未知风险
本文将数据分析,也归纳为三层需求
第一层需求:应对已知的已知风险
可以将这一层需求看作为被动使用的数据,拿零售行业的场景举例:
采购员要进行采购,没有数据作为参考,只能进行盲目采购,那商店的缺断货、商品积压的风险一定出现。所以采购员需要通过数据查看各类商品的销售情况、库存情况、可售天数情况进行判断,以此决定采购需求,避免错误的商品采购所导致的商品缺断货、高库存等风险。此为通过数据来应对已知的已知风险。
对于企业之中,这类的应用特别多,多到部分企业会忽略这是一种数据分析的应用。企业中常用的业务系统比如erp等软件系统,也会自带一些简单的数据查看类报表,其作用也是很大程度上来应对这一类风险。
但是,从另一个角度去看,这类风险的应对也有很大的优化空间:
风险应对的效率:提升风险应对的效率,是提升应用标准化的一个体现,当一个应用难以使用时,容易造成人员惰性,取巧而放弃使用,从而提高了风险发生的概率。
复杂的已知的已知风险的应对:绝大部分企业并没有将数据覆盖所有的已知风险,举例:新品的引进,新品的引进为商店带来新的盈利点,但是错误的引进甚至会带来负面效应。大部分企业的新品引进并没有一个很好的方案来应对:通过数据进行品类关联并对比,可以看出本店铺对于市场上销量靠前的商品的缺货情况,本店已有商品的市场占有情况,从而可以优化新品引进的策略。这一类的应用还有很大的空间,这也就是为什么很多企业乐于同行之间的交流,希望彼此可以互通有无,发现类似数据场景的应用。
第二层需求:应对未知的已知风险
这一类数据一般为主动使用的数据,更多的是周期性使用的数据,常见的比如领导们常看的日报表、周报表等。
企业的风险发生的概率是分布在每一天的,但是它每一天都可能发生也可能不发生,例如部分员工的消极怠工、部分商品的质量异常、个别门店突然面临的对手竞争等。这一类风险当然是希望在发生的最短时间内就可以发现并且应对。所以企业中产生了大量的这一类型的报表需求。
这类报表也很常见,但是他们价值的体现不如第一层需求类来的直接,这一类报表经常被浏览,但大部分情况是没有发现风险的,所以有时会产生一种这类报表没什么用的感觉。
在我们所遇到的项目中,这类需求报表占比是很多的,也是争议最大的。领导层所需要看的日/周/月报类报表相对还好,毕竟是每天都会有人看,并且作为企业数据监督和追踪的一种形式。
此外,还会有很多分析类的报表也属于这一层级,比如商品的价格带分析:找到某类商品的价格点,对比销售高点或销量高点,从而发现可能的商品价格分布的不合理或者货架摆放位置的不合理(价格点商品附近陈列丰富的商品可以给顾客带来商品丰富的感觉)。进一步调整商品价格分布以应对商品陈列或者价格分布的风险(机会)。
这类报表的应用难度比较大,因为经验或者知识储备的不同,对风险的认知和识别能力不同。同样以上面的价格带分析报表为例,其目的为应对陈列、商品价格分布、商品引进/采购、目标活动人群选择的风险。但是使用报表的业务人员没有形成对这些风险(机会)的认知,就造成了缺乏对该报表的数据解读能力,该报表便成为了一个花瓶报表,价值无法得到体现。
针对这一类报表,我的建议是场景化,让每一张报表背后都有它的风险机会描述,当自我不能解读的报表,也就不要指望业务可以解读并使用,并不是将一堆的指标都进行展示就能产生价值,它于落地的应用还相隔甚远。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11