
R语言均值,中位数和模式
在R统计分析是通过用许多内置函数来执行的。 大多数这些函数是R基本包的一部分。这些函数需要R向量作为输入参数并给出结果。
我们正在讨论本章中的函数是平均数,中位数和模式。
平均值
它是通过取的值的总和,并除以一个数据系列的数量计算的。
函数mean()是用来计算这在R语言中
语法
用于计算平均值在 R 中的基本语法是:
mean(x, trim = 0, na.rm = FALSE, ...)
以下是所使用的参数的说明:
x 是输入向量。
trim 用于删除一些要素/空格从排序向量的两端。
na.rm 用于从输入矢量删除丢失的值。
示例
# Create a vector.
x <- c(12,7,3,4.2,18,2,54,-21,8,-5)
# Find Mean.
result.mean <- mean(x)
print(result.mean))
当我们上面的代码执行时,它产生以下结果:
[1] 8.22
应用修剪选项
当修剪参数被提供时,在向量中的值获得排序,然后观察所需要的数据从计算平均丢弃。
当trim =0.3,是从每一端的3个值将被从找到中计算删除的意思。
在这种情况下,排序矢量为(-21,-5,2,3,4.2,7,8,12,18,54)和从向量表除去,用于计算平均值的值从(-21,-5,2)左侧和从(12,18,54)右边。
# Create a vector.
x <- c(12,7,3,4.2,18,2,54,-21,8,-5)
# Find Mean.
result.mean <- mean(x,trim=0.3)
print(result.mean
当我们上面的代码执行时,它产生以下结果:
[1] 5.55
应用NA选项
如果有缺失值,则意味着函数返回 NA。
从计算中使用 na.rm= TRUE 删除缺失值。这意味着删除 NA 值。
# Create a vector.
x <- c(12,7,3,4.2,18,2,54,-21,8,-5,NA)
# Find mean.
result.mean <- mean(x)
print(result.mean)
# Find mean dropping NA values.
result.mean <- mean(x,na.rm=TRUE)
print(result.mean)
当我们上面的代码执行时,它产生以下结果:
[1] NA
[1] 8.22
中位数
在一个数据串的中间最值被称为中值。median() 函数用于在 R 中计算此值。
语法
在 R 中用于计算中位数的基本语法是:
median(x, na.rm = FALSE)
以下是所使用的参数的说明:
x 是输入向量。
na.rm 用于从输入矢量删除丢失的值。
例子
# Create the vector.
x <- c(12,7,3,4.2,18,2,54,-21,8,-5)
# Find the median.
median.result <- median(x)
print(median.result)
当我们上面的代码执行时,它产生以下结果:
[1] 5.6
模式
模式是一个具有最高发生次数的一组数据的值。不同于平均数和中位数,模式可以同时拥有数字和字符数据。
R没有一个标准的内置函数来计算模式。因此,我们创建一个用户函数来计算在R数据集的模式,该函数将向量作为输入,并给出了模式的值输出。
示例
# Create the function.
getmode <- function(v) {
uniqv <- unique(v)
uniqv[which.max(tabulate(match(v, uniqv)))]
}
# Create the vector with numbers.
v <- c(2,1,2,3,1,2,3,4,1,5,5,3,2,3)
# Calculate the mode using the user function.
result <- getmode(v)
print(result)
# Create the vector with characters.
charv <- c("o","it","the","it","it")
# Calculate the mode using the user function.
result <- getmode(charv)
print(result)
当我们上面的代码执行时,它产生以下结果:
[1] 2
[1] "it"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11