
R语言均值,中位数和模式
在R统计分析是通过用许多内置函数来执行的。 大多数这些函数是R基本包的一部分。这些函数需要R向量作为输入参数并给出结果。
我们正在讨论本章中的函数是平均数,中位数和模式。
平均值
它是通过取的值的总和,并除以一个数据系列的数量计算的。
函数mean()是用来计算这在R语言中
语法
用于计算平均值在 R 中的基本语法是:
mean(x, trim = 0, na.rm = FALSE, ...)
以下是所使用的参数的说明:
x 是输入向量。
trim 用于删除一些要素/空格从排序向量的两端。
na.rm 用于从输入矢量删除丢失的值。
示例
# Create a vector.
x <- c(12,7,3,4.2,18,2,54,-21,8,-5)
# Find Mean.
result.mean <- mean(x)
print(result.mean))
当我们上面的代码执行时,它产生以下结果:
[1] 8.22
应用修剪选项
当修剪参数被提供时,在向量中的值获得排序,然后观察所需要的数据从计算平均丢弃。
当trim =0.3,是从每一端的3个值将被从找到中计算删除的意思。
在这种情况下,排序矢量为(-21,-5,2,3,4.2,7,8,12,18,54)和从向量表除去,用于计算平均值的值从(-21,-5,2)左侧和从(12,18,54)右边。
# Create a vector.
x <- c(12,7,3,4.2,18,2,54,-21,8,-5)
# Find Mean.
result.mean <- mean(x,trim=0.3)
print(result.mean
当我们上面的代码执行时,它产生以下结果:
[1] 5.55
应用NA选项
如果有缺失值,则意味着函数返回 NA。
从计算中使用 na.rm= TRUE 删除缺失值。这意味着删除 NA 值。
# Create a vector.
x <- c(12,7,3,4.2,18,2,54,-21,8,-5,NA)
# Find mean.
result.mean <- mean(x)
print(result.mean)
# Find mean dropping NA values.
result.mean <- mean(x,na.rm=TRUE)
print(result.mean)
当我们上面的代码执行时,它产生以下结果:
[1] NA
[1] 8.22
中位数
在一个数据串的中间最值被称为中值。median() 函数用于在 R 中计算此值。
语法
在 R 中用于计算中位数的基本语法是:
median(x, na.rm = FALSE)
以下是所使用的参数的说明:
x 是输入向量。
na.rm 用于从输入矢量删除丢失的值。
例子
# Create the vector.
x <- c(12,7,3,4.2,18,2,54,-21,8,-5)
# Find the median.
median.result <- median(x)
print(median.result)
当我们上面的代码执行时,它产生以下结果:
[1] 5.6
模式
模式是一个具有最高发生次数的一组数据的值。不同于平均数和中位数,模式可以同时拥有数字和字符数据。
R没有一个标准的内置函数来计算模式。因此,我们创建一个用户函数来计算在R数据集的模式,该函数将向量作为输入,并给出了模式的值输出。
示例
# Create the function.
getmode <- function(v) {
uniqv <- unique(v)
uniqv[which.max(tabulate(match(v, uniqv)))]
}
# Create the vector with numbers.
v <- c(2,1,2,3,1,2,3,4,1,5,5,3,2,3)
# Calculate the mode using the user function.
result <- getmode(v)
print(result)
# Create the vector with characters.
charv <- c("o","it","the","it","it")
# Calculate the mode using the user function.
result <- getmode(charv)
print(result)
当我们上面的代码执行时,它产生以下结果:
[1] 2
[1] "it"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26