京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言饼图图表
R语言编写有许多库用来创建图表和图形。饼图是表示不同颜色的值的圆片。切片标记和对应于各切片的数量也被表示在图表中。
R语言中的饼图使用 pie()函数,接受正数作为一个向量输入来创建。附加参数用于控制标签,颜色,标题等
语法
使用R创建一个饼图基本语法:
pie(x, labels, radius, main, col, clockwise)
以下是所使用的参数的说明:
x - 是包含在饼图中使用的数值的矢量。
labels - 用于给出切片的描述。
radius - 指示饼图的圆的半径。(-1和+1之间的值)。
main - 指示图表的标题。
col - 指示调色板。
clockwise - 是一个逻辑值指示该切片绘制顺时针或逆时针方向。
示例
只用了输入向量和标签创建了一个非常简单的饼图。下面的脚本将创建并保存饼图到R的当前工作目录。
# Create data for the graph.
x <- c(21, 62, 10, 53)
labels <- c("London", "New York", "Singapore", "Mumbai")
# Give the chart file a name.
png(file = "city.jpg")
# Plot the chart.
pie(x,labels)
# Save the file.
dev.off(
当我们上面的代码执行时,它产生以下结果:
饼图的标题和颜色
我们可以通过添加函数更多的参数扩展图表的特性。我们将使用参数 main 作为标题添加到图表,另一个参数是 col,将利用彩虹调色板在绘制的图表时。托板的长度应相同于图表值的数目。因此,我们使用 length(x)。
示例
下面的脚本将创建并保存饼图到R的当前工作目录。
# Create data for the graph.
x <- c(21, 62, 10, 53)
labels <- c("London", "New York", "Singapore", "Mumbai")
# Give the chart file a name.
png(file = "city_title_colours.jpg")
# Plot the chart with title and rainbow color pallet.
pie(x, labels, main="City pie chart", col=rainbow(length(x)))
# Save the file.
dev.off()
当我们上面的代码执行时,它产生以下结果:
切片百分比和图表图例
我们可以通过创建额外的图表变量添加切片百分比和图表图例。
# Create data for the graph.
x <- c(21, 62, 10,53)
labels <- c("London","New York","Singapore","Mumbai")
piepercent<- round(100*x/sum(x), 1)
# Give the chart file a name.
png(file = "city_percentage_legends.jpg")
# Plot the chart.
pie(x, labels=piepercent, main="City pie chart",col=rainbow(length(x)))
legend("topright", c("London","New York","Singapore","Mumbai"), cex=0.8, fill=rainbow(length(x)))
# Save the file.
dev.off()
当我们上面的代码执行时,它产生以下结果:
3D 饼形图
饼图和3个维度需要使用额外的软件包绘制。软件包:plotrix 称为 pie3D(一个函数,被用于此目的)。
# Get the library.
library(plotrix)
# Create data for the graph.
x <- c(21, 62, 10,53)
lbl <- c("London","New York","Singapore","Mumbai")
# Give the chart file a name.
png(file = "3d_pie_chart.jpg")
# Plot the chart.
pie3D(x,labels=lbl,explode=0.1,
main="Pie Chart of Countries ")
# Save the file.
dev.off()
当我们上面的代码执行时,它产生以下结果:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12