京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言字符串
使用一对单引号或双引号在R语言中的任何值被视为字符串。在内部R语言存储的每串使用双引号括起来,即使使用单引号创建。
在字符串中创建规则应用
在开始和结束字符串的引号应该是两个双引号或两个单引号。它们不能被混合。
双引号可以插入到一个字符串开始,以单引号结束。
单引号可以插入一个字符串开始,以双引号结束。
双引号不能插入到一个字符串的开始并以双引号结束。
单引号不能插入到一个字符串开始,以单引号结束。
有效的字符串示例
下面的例子阐明有关创建一个字符串在R语言中的规则
a <- 'Start and end with single quote'
print(a)
b <- "Start and end with double quotes"
print(b)
c <- "single quote ' in between double quotes"
print(c)
d <- 'Double quotes " in between single quote'
print(d)
当上述代码运行时,我们得到以下的输出:
[1] "Start and end with single quote"
[1] "Start and end with double quotes"
[1] "single quote ' in between double quote"
[1] "Double quote \" in between single quote"
无效的字符串示例
e <- 'Mixed quotes"
print(e)
f <- 'Single quote ' inside single quote'
print(f)
g <- "Double quotes " inside double quotes"
print(g)
当上述代码运行时,我们得到以下的输出:
...: unexpected INCOMPLETE_STRING
.... unexpected symbol
1: f <- 'Single quote ' inside
unexpected symbol
1: g <- "Double quotes " inside
字符串操作
连接字符串 - paste() 函数
R中许多字符串使用 paste() 函数来组合。它可以将任意数量的参数组合在一起。
语法
粘贴(paste)函数的基本语法是:
paste(..., sep = " ", collapse = NULL)
以下是所使用的参数的说明:
... - 表示要组合的任何数量的参数。
sep - 表示参数之间的分隔符。它是任选的。
collapse - 用于消除两个字符串之间的空间。但不是在一个字符串的两个词的空间。
示例
a <- "Hello"
b <- 'How'
c <- "are you? "
print(paste(a,b,c))
print(paste(a,b,c, sep = "-"))
print(paste(a,b,c, sep = "", collapse = ""))
当我们上面的代码执行时,它产生以下结果:
[1] "Hello How are you? "
[1] "Hello-How-are you? "
[1] "HelloHoware you? "
格式化数字和字符串 - format()函数
数字和字符串可以使用 format()函数的格式化为特定样式。
语法
format()函数的基本语法是:
format(x, digits, nsmall,scientific,width,justify = c("left", "right", "centre", "none"))
以下是所使用的参数的说明:
x - 为向量输入
digits - 是显示总位数
nsmall - 是最小位数的小数点右边
scientific - 设置为TRUE,则显示科学记数法
width - 指示要通过填充空白在开始时显示的最小宽度
justify - 是字符串显示在左边,右边或中心
示例
# Total number of digits displayed. Last digit rounded off.
result <- format(23.123456789, digits = 9)
print(result)
# Display numbers in scientific notation.
result <- format(c(6, 13.14521), scientific = TRUE)
print(result)
# The minimum number of digits to the right of the decimal point.
result <- format(23.47, nsmall = 5)
print(result)
# Format treats everything as a string.
result <- format(6)
print(result)
# Numbers are padded with blank in the beginning for width.
result <- format(13.7, width = 6)
print(result)
# Left justify strings.
result <- format("Hello",width = 8, justify = "l")
print(result)
# Justfy string with center.
result <- format("Hello",width = 8, justify = "c")
print(result)
当我们上面的代码执行时,它产生以下结果:
[1] "23.1234568"
[1] "6.000000e+00" "1.314521e+01"
[1] "23.47000"
[1] "6"
[1] " 13.7"
[1] "Hello "
[1] " Hello "
统计字符串的字符数 - ncahr()函数
函数计算字符数量,包括在一个字符串的空格的个数。
语法
nchar()函数的基本语法是:
nchar(x)
以下是所使用的参数的说明:
x - 向量输入。
示例
result <- nchar("Count the number of characters")
print(result)
当我们上面的代码执行时,它产生以下结果:
[1] 30
改变大小写 - toupper()和 tolower()函数
这些函数改变字符串的字符的大小写。
语法
toupper()和 tolower()函数的基本语法为:
toupper(x)
tolower(x)
以下是所使用的参数的说明:
x - 向量输入。
示例
# Changing to Upper case.
result <- toupper("Changing To Upper")
print(result)
# Changing to lower case.
result <- tolower("Changing To Lower")
print(result)
当我们上面的代码执行时,它产生以下结果:
[1] "CHANGING TO UPPER"
[1] "changing to lower"
提取字符串的一部分 - substring()函数
这个函数提取字符串的一部分。
语法
substring()函数的基本语法是:
substring(x,first,last)
以下是所使用的参数的说明:
x - 是字符向量输入。
first - 是第一个字符要被提取的位置。
last - 是最后一个字符要被提取的位置。
示例
# Extract characters from 5th to 7th position.
result <- substring("Extract", 5, 7)
print(result)
当我们上面的代码执行时,它产生以下结果:
[1] "act"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27