
SPSS详细操作:生存资料的Cox回归分析
一、问题与数据
某研究者拟观察某新药的抗肿瘤效果,将70名肺癌患者随机分为两组,分别采用该新药和常规药物进行治疗,观察两组肺癌患者的生存情况,共随访2年。研究以死亡为结局,两种治疗方式为主要研究因素,同时考虑调整年龄和性别的影响,比较两种疗法对肺癌患者生存的影响是否有差异。变量的赋值和部分原始数据见表1和表2。
表1. 肺癌患者生存的影响因素与赋值
表2. 两组患者的生存情况
二、对数据结构的分析
该研究以死亡为结局,治疗方式为主要研究因素,每个研究对象都有生存时间(随访开始到死亡、失访或随访结束的时间),同时考虑调整年龄和性别的影响。欲了解两种疗法对肺癌患者生存的影响是否有差异,可以用Cox比例风险模型(Cox proportional-hazards model,也称为Cox回归)进行分析。
实际上,Cox回归的结局不一定是死亡,也可以是发病、妊娠、再入院等。其共同特点是,不仅考察结局是否发生,还考察结局发生的时间。
在进行Cox回归分析前,如果样本不多而变量较多,建议先通过单变量分析(KM法绘制生存曲线、Logrank检验等)考察所有自变量与因变量之间的关系,筛掉一些可能无意义的变量,再进行多因素分析,这样可以保证结果更加可靠。即使样本足够大,也不建议把所有的变量放入方程直接分析,一定要先弄清楚各个变量之间的相互关系,确定自变量进入方程的形式,这样才能有效的进行分析。
单因素分析后,应当考虑应该将哪些自变量纳入Cox回归模型。一般情况下,建议纳入的变量有:1)单因素分析差异有统计学意义的变量(此时,最好将P值放宽一些,比如0.1或0.15等,避免漏掉一些重要因素);2)单因素分析时,没有发现差异有统计学意义,但是临床上认为与因变量关系密切的自变量。
三、SPSS分析方法
1. 数据录入SPSS
2. Analyze→Survival→Cox Regression
3. 选项设置
1)主对话框设置:
①将生存时间变量送入Time框中→②将结局变量送入Status框中→③点击Define Event→④定义表示终点事件发生的数值(此例中为死亡,用1表示)→⑤Continue→⑥将分组因素和需要调整的变量送入Covariates框中→⑦Method选择Forward:LR。
对于自变量筛选的方法(Method对话框),SPSS提供了7种选择,使用各种方法的结果略有不同,读者可相互印证。各种方法之间的差别在于变量筛选方法不同,其中Forward: LR法(基于最大似然估计的向前逐步回归法)的结果相对可靠,但最终模型的选择还需要获得专业理论的支持。
2)Categorical Covariates选项设置:
①将分类变量group选入右侧Categorical Covariates里,②并选择Reference Category以First为参比(即选择最小数值为参照组),其他按默认选项→③Change→Continue
注意:在数据录入时,建议将二分类变量赋值为0和1;多分类变量赋值为0、1、2、3或者1、2、3、4等,并根据以下情况设置Categorical Covariates选项:
A. 以下情况,可以不定义Categorical Covariates选项:当自变量是二分类变量,并且赋值的差值为1,例如赋值为0和1,也不需要绘制该变量不同组间的生存曲线时。
B. A以外的情况都必须定义Categorical Covariates选项。需特别注意两种情况:①当自变量是二分类变量,但要在Plots选项中设置,得到不同组间的生存曲线时。比如本例中,group为二分类变量,但要观察不同用药组间的生存曲线,就需要在Categorical Covariates选项中定义group变量;②多分类变量时。
3)Plots选项设置:
要绘制生存曲线,①可选择Plots Type中的Survival作为输出的图形,②将主要分类变量选入右侧Separate lines for中,可以输出该变量不同组间对应的生存曲线,其他按默认选项→Continue
4)Options选项设置:
①选择Model Statics中的CI for exp(B)要求输出HR值的95%置信区间,②选择Display model imformation中的At last step(即要求仅输出最后一步的模型),其他按默认选项→Continue→OK
四、结果解读
1. Case Processing Summary表格给出了分析数据的基本情况,其中包括事件发生数(Event)、删失数(Censored)和总数(Total)等信息。
2.Categorical Variable Codings表格给出了Categorical Covariates选项中设置的变量(本例中为group)所对应的赋值情况和频率(Frequency)。最后一列给出了变量编码的情况。脚注b. Indicator Parameter Coding说明了本研究中group变量以First为参照组(Categorical Covariates选项中的设置)。
3.Omnibus Tests of Model Coefficients表格给出了模型中所有变量的回归系数全为0的检验结果。对于本例,①Score统计量为5.065,P=0.024;②对数似然比检验χ2=5.399,P=0.020。说明模型中至少有一个自变量的HR值不为1,模型整体检验有统计学意义。
4.Variables in the Equation表格给出了参数估计的结果。结果显示最后筛选后的模型仅包含group变量,①P=Sig.=0.029说明治疗方式为影响肺癌患者预后的独立因素。②相对危险度HR=Exp(B)=0.410,说明使用新药的患者死亡风险为使用常规药物患者的0.410倍,③HR的95%可信区间(95% CI)为0.184-0.914。
5.生存曲线。前述Plots选项的设置要求输出按照不同药物分组的生存曲线。新药组(赋值为1,绿色线条)比常规药物组(赋值为0,蓝色线条)的生存率高。值得注意的是,该图片并未编辑,不符合给杂志投稿的要求。关于图片的编辑此处不再展开讨论。
五、撰写结论
治疗方式为影响肺癌的独立因素(P=0.029)。与常规药物相比,使用新药的肺癌患者的死亡风险低于使用常规药物的患者,HR=0.410(95% CI: 0.184-0.914)。
六、备注
Cox回归使用的前提是满足比例风险假定(PH假定),即主要研究因素(包括Covariates框中放入的其它协变量)的各层间均应满足PH假定。如果不满足,则应当将变量放入Strata框中进行分层变量控制。cda数据分析师培训
具体如何判断各变量是否满足PH假定,以及如何设置Strata对话框对变量进行分层控制,咱们以后再聊。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23