
R语言利器之ddply和aggregate
ddply和aggregate是两个用来整合数据的功能强大的函数。
aggregate(x, ...)
关于aggregate()函数的使用在《R语言实战》中P105有简单描述,这里重新说一下。此函数主要有一下几种用法:
## Default S3 method:
aggregate(x, ...)
## S3 method for class 'data.frame'
aggregate(x, by, FUN, ..., simplify = TRUE, drop = TRUE)
## S3 method for class 'formula'
aggregate(formula, data, FUN, ...,subset, na.action = na.omit)
## S3 method for class 'ts'
aggregate(x, nfrequency = 1, FUN = sum, ndeltat = 1,ts.eps = getOption("ts.eps"), ...)
例:
attach(mtcars)
aggdata <-aggregate(mtcars, by=list(cyl,gear), FUN=mean, na.rm=TRUE)
aggdata
Group.1 Group.2 mpg cyl disp hp drat wt qsec vs am gear carb
1 4 3 21.500 4 120.1000 97.0000 3.700000 2.465000 20.0100 1.0 0.00 3 1.000000
2 6 3 19.750 6 241.5000 107.5000 2.920000 3.337500 19.8300 1.0 0.00 3 1.000000
3 8 3 15.050 8 357.6167 194.1667 3.120833 4.104083 17.1425 0.0 0.00 3 3.083333
4 4 4 26.925 4 102.6250 76.0000 4.110000 2.378125 19.6125 1.0 0.75 4 1.500000
5 6 4 19.750 6 163.8000 116.5000 3.910000 3.093750 17.6700 0.5 0.50 4 4.000000
6 4 5 28.200 4 107.7000 102.0000 4.100000 1.826500 16.8000 0.5 1.00 5 2.000000
7 6 5 19.700 6 145.0000 175.0000 3.620000 2.770000 15.5000 0.0 1.00 5 6.000000
8 8 5 15.400 8 326.0000 299.5000 3.880000 3.370000 14.5500 0.0 1.00 5 6.000000
得到数据框aggdata,其中的Group.1和Group.2的列名可以指定,只需第二行写成:
1
aggdata <-aggregate(mtcars, by=list(Group.cyl=cyl, Group.gears=gear),FUN=mean, na.rm=TRUE)
即可。
注意:在使用aggregate()函数的时候, by中的变量必须在一个列表中(即使只有一个变量) 。 指定的函数FUN可为任意的内建或自编函数 。
其他的一些例子:
## Compute the averages for the variables in 'state.x77', grouped
## according to the region (Northeast, South, North Central, West) that
## each state belongs to.
aggregate(state.x77, list(Region = state.region), mean)
## Compute the averages according to region and the occurrence of more
## than 130 days of frost.
aggregate(state.x77,
list(Region = state.region,Cold = state.x77[,"Frost"] > 130),
mean)
## (Note that no state in 'South' is THAT cold.)
## example with character variables and NAs
testDF <- data.frame(v1 = c(1,3,5,7,8,3,5,NA,4,5,7,9),
v2 = c(11,33,55,77,88,33,55,NA,44,55,77,99) )
by1 <- c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12)
by2 <- c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA)
aggregate(x = testDF, by = list(by1, by2), FUN = "mean")
# and if you want to treat NAs as a group
fby1 <- factor(by1, exclude = "")
fby2 <- factor(by2, exclude = "")
aggregate(x = testDF, by = list(fby1, fby2), FUN = "mean")
## Formulas, one ~ one, one ~ many, many ~ one, and many ~ many:
aggregate(weight ~ feed, data = chickwts, mean)
aggregate(breaks ~ wool + tension, data = warpbreaks, mean)
aggregate(cbind(Ozone, Temp) ~ Month, data = airquality, mean)
aggregate(cbind(ncases, ncontrols) ~ alcgp + tobgp, data = esoph, sum)
## Dot notation:
aggregate(. ~ Species, data = iris, mean)
aggregate(len ~ ., data = ToothGrowth, mean)
## Often followed by xtabs():
ag <- aggregate(len ~ ., data = ToothGrowth, mean)
xtabs(len ~ ., data = ag)
## Compute the average annual approval ratings for American presidents.
aggregate(presidents, nfrequency = 1, FUN = mean)
## Give the summer less weight.
aggregate(presidents, nfrequency = 1,
FUN = weighted.mean, w = c(1, 1, 0.5, 1))
ddplycda数据分析师培训
下面是ddply函数的一般用法:
# Summarize a dataset by two variables
dfx <- data.frame(
group = c(rep('A', 8), rep('B', 15), rep('C', 6)),
sex = sample(c("M", "F"), size = 29, replace = TRUE),
age = runif(n = 29, min = 18, max = 54)
)
head(dfx)
group sex age
1 A M 22.44750
2 A M 52.92616
3 A F 30.00443
4 A M 39.56907
5 A M 18.89180
6 A F 50.81139
#Note the use of the '.' function to allow
# group and sex to be used without quoting
ddply(dfx, .(group, sex), summarize,mean = round(mean(age), 2),sd = round(sd(age), 2))
group sex mean sd
1 A F 40.41 14.71
2 A M 30.35 13.17
3 B F 34.81 12.76
4 B M 34.04 13.36
5 C F 35.09 13.39
6 C M 28.53 4.57
# An example using a formula for .variables
ddply(baseball[1:100,], ~ year, nrow)
year V1
1 1871 7
2 1872 13
3 1873 13
4 1874 15
5 1875 17
6 1876 15
7 1877 17
8 1878 3
# Applying two functions; nrow and ncol
ddply(baseball, .(lg), c("nrow", "ncol"))
lg nrow ncol
1 65 22
2 AA 171 22
3 AL 10007 22
4 FL 37 22
5 NL 11378 22
6 PL 32 22
7 UA 9 22
# Calculate mean runs batted in for each year
rbi <- ddply(baseball, .(year), summarise,mean_rbi = mean(rbi, na.rm = TRUE))
head(rbi)
year mean_rbi
1 1871 22.28571
2 1872 20.53846
3 1873 30.92308
4 1874 29.00000
5 1875 31.58824
6 1876 30.13333
# Plot a line chart of the result
plot(mean_rbi ~ year, type = "l", data = rbi)
# make new variable career_year based on the
# start year for each player (id)
base2 <- ddply(baseball, .(id), mutate,career_year = year - min(year) + 1)
head(base2)
id year stint team lg g ab r h X2b X3b hr rbi sb cs bb so ibb hbp sh sf gidp career_year
1 aaronha01 1954 1 ML1 NL 122 468 58 131 27 6 13 69 2 2 28 39 NA 3 6 4 13 1
2 aaronha01 1955 1 ML1 NL 153 602 105 189 37 9 27 106 3 1 49 61 5 3 7 4 20 2
3 aaronha01 1956 1 ML1 NL 153 609 106 200 34 14 26 92 2 4 37 54 6 2 5 7 21 3
4 aaronha01 1957 1 ML1 NL 151 615 118 198 27 6 44 132 1 1 57 58 15 0 0 3 13 4
5 aaronha01 1958 1 ML1 NL 153 601 109 196 34 4 30 95 4 1 59 49 16 1 0 3 21 5
6 aaronha01 1959 1 ML1 NL 154 629 116 223 46 7 39 123 8 0 51 54 17 4 0 9 19 6
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27