京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当今世界最有价值的资源是什么?不是石油,而是数据
一种新的大宗商品正在一个利润丰厚、增长迅猛的行业中酝酿,反垄断监管者也开始着手限制那些有能力控制这种商品的人。如果是在一个世纪前,这种商品就是石油。而现在,引发巨头们争相抢夺的变成了数据,也就是数字时代的石油。
包括Alphabet(谷歌(微博)母公司)、亚马逊、苹果、Facebook和微软在内的科技巨头似乎都势不可挡。他们是当今世界上市值最高的五大公司,他们的利润都在飙升,他们2017年第一季度共计实现净利润逾250亿美元。全美超过一半的在线开支都被亚马逊吸走,谷歌和Facebook去年几乎攫取了美国数字广告营收的全部增量。
如此强大的垄断地位引发了人们的警惕,很多人呼吁分拆这些公司,就像20世纪初对标准石油公司的分拆一样。本刊之前曾经反驳过这种激进观点。仅仅因为拥有庞大的规模并不构成犯罪。巨头的成功给消费者也带来了利益。没有几个人希望失去谷歌搜索引擎、亚马逊当日送达服务或者Facebook的Newsfeed信息流。
如果套用标准的反垄断程序,这些公司似乎也没有达到警戒线。这些公司非但没有剥削消费者,反而提供免费的服务(用户实际上是用自己的数据来换取服务)。考虑到数量庞大的线下竞争对手,他们的市场份额似乎也不足为惧。而Snapchat等新兴企业的崛起也表明,新一代公司也可以掀起一些波澜。
但我们仍有理由感到担忧。互联网公司对数据的控制使之掌握了巨大的权力。在数字经济中,石油时代沿袭下来的传统竞争思维似乎已经过时。需要采用新的思维模式。
数量与质量兼得
究竟出现了哪些变化?智能手机和互联网催生了海量数据,不仅无处不在,而且价值大幅提升。无论是跑步、看电视还是堵在车流中慢慢前行,几乎所有的活动都会留下数字足迹——从而贡献更多的原始数据以供分析。随着手表和汽车等更多设备接入互联网,数据量只会有增无减:有的人估计,无人驾驶汽车每秒将会产生100GB的数据。与此同时,人工智能技术也可以从数据中挖掘更多价值。
部分数据驱动的交易
算法可以预测消费者何时有意购物,飞机何时需要维护,某人何时生病。通用电气和西门子等工业巨头也都纷纷定位为数据公司。
海量的数据变化改变了竞争的特性。科技巨头始终受益于网络效应:注册Facebook的用户越多,就越能吸引其他人注册。而这些数据又会构成额外的网络效应。通过收集更多的数据,企业便可改进自家产品,从而吸引更多用户,甚至生成更多数据。
特斯拉收集的无人驾驶汽车数据越多,就越能改进无人驾驶——第一季度销量只有2.5万辆的特斯拉却能超过销量230万辆的通用汽车,一定程度上就源于此。海量数据可以充当企业的护城河。
数据也可以成为抵抗竞争对手的方式。在科技行业,人们之所以对竞争怀有期望,是因为某个车库里的创业公司可能击败老牌企业,也有可能出现意料之外的技术变革。但在数据时代,这两种可能性都大幅降低。
巨头的监控系统覆盖整个经济:谷歌可以看到人们搜索什么,Facebook知道你在分享什么,亚马逊对你的购物习惯了如指掌。他们拥有应用商店、操作系统,还向创业公司出租计算资源。他们拥有“上帝之眼”,可以监控自己的市场和其他市场。他们能够看到哪些新产品和新服务受到追捧,因而能够及时模仿,甚至直接收购,避免遭遇更大的威胁。
很多人都认为,Facebook在2014年斥资220亿美元收购员工总数不到60人的WhatsApp,是为了消灭潜在竞争对手。通过竞争门槛和预警系统的恰当融合,便可借助数据有效遏制竞争。
改变反垄断思维
正是因为数据具备这些特性,才使得以往的反垄断措施效果降低。把谷歌分拆成5家公司不会阻止网络效应的扩张:假以时日,其中的一家公司仍会再次主导市场。因而需要辅以激进的思维——随着新的方法逐渐明确,两种想法逐渐进入人们的视野。
第一种的关键在于,反垄断官员需要从工业化时代过渡到21世纪。例如,他们以往在评估并购交易时,都会根据规模来判断是否介入,但现在需要通过企业的数据资产来评估交易影响。交易价格也会成为一个信号,帮助其判断老牌企业是否在通过收购排除威胁。
例如,Facebook愿意花这么高的价钱购买没有任何收入的WhatsApp,就应该引起警惕。反垄断官员还应该在分析市场动态时更加重视数据
例如,可以使用模拟器来寻找串谋定价算法,从而最大程度地促进竞争。
第二种则是降低在线服务提供商对数据的控制权,让数据提供者掌握更大的控制权。提升透明度可以带来一定的帮助:可以强迫企业向消费者披露他们所拥有的数据,以及他们借此获取的收入。
政府可以鼓励企业开发新型服务,甚至开放更多的政府数据库,把数字经济的关键组成部分当做公共基础设施来对待,就像印度的数字身份系统Aadhaar一样。还可以在用户许可的情况下强制分享某些数据——欧洲就在金融服务领域采取了这种方式,要求银行向第三方开放用户数据。
在信息时代开展反垄断并非易事,而且还会引发新的风险:例如,分享的数据越多,隐私威胁就越大。但如果政府不希望数据经济被少数巨头垄断,就必须尽快采取行动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07