
当今世界最有价值的资源是什么?不是石油,而是数据
一种新的大宗商品正在一个利润丰厚、增长迅猛的行业中酝酿,反垄断监管者也开始着手限制那些有能力控制这种商品的人。如果是在一个世纪前,这种商品就是石油。而现在,引发巨头们争相抢夺的变成了数据,也就是数字时代的石油。
包括Alphabet(谷歌(微博)母公司)、亚马逊、苹果、Facebook和微软在内的科技巨头似乎都势不可挡。他们是当今世界上市值最高的五大公司,他们的利润都在飙升,他们2017年第一季度共计实现净利润逾250亿美元。全美超过一半的在线开支都被亚马逊吸走,谷歌和Facebook去年几乎攫取了美国数字广告营收的全部增量。
如此强大的垄断地位引发了人们的警惕,很多人呼吁分拆这些公司,就像20世纪初对标准石油公司的分拆一样。本刊之前曾经反驳过这种激进观点。仅仅因为拥有庞大的规模并不构成犯罪。巨头的成功给消费者也带来了利益。没有几个人希望失去谷歌搜索引擎、亚马逊当日送达服务或者Facebook的Newsfeed信息流。
如果套用标准的反垄断程序,这些公司似乎也没有达到警戒线。这些公司非但没有剥削消费者,反而提供免费的服务(用户实际上是用自己的数据来换取服务)。考虑到数量庞大的线下竞争对手,他们的市场份额似乎也不足为惧。而Snapchat等新兴企业的崛起也表明,新一代公司也可以掀起一些波澜。
但我们仍有理由感到担忧。互联网公司对数据的控制使之掌握了巨大的权力。在数字经济中,石油时代沿袭下来的传统竞争思维似乎已经过时。需要采用新的思维模式。
数量与质量兼得
究竟出现了哪些变化?智能手机和互联网催生了海量数据,不仅无处不在,而且价值大幅提升。无论是跑步、看电视还是堵在车流中慢慢前行,几乎所有的活动都会留下数字足迹——从而贡献更多的原始数据以供分析。随着手表和汽车等更多设备接入互联网,数据量只会有增无减:有的人估计,无人驾驶汽车每秒将会产生100GB的数据。与此同时,人工智能技术也可以从数据中挖掘更多价值。
部分数据驱动的交易
算法可以预测消费者何时有意购物,飞机何时需要维护,某人何时生病。通用电气和西门子等工业巨头也都纷纷定位为数据公司。
海量的数据变化改变了竞争的特性。科技巨头始终受益于网络效应:注册Facebook的用户越多,就越能吸引其他人注册。而这些数据又会构成额外的网络效应。通过收集更多的数据,企业便可改进自家产品,从而吸引更多用户,甚至生成更多数据。
特斯拉收集的无人驾驶汽车数据越多,就越能改进无人驾驶——第一季度销量只有2.5万辆的特斯拉却能超过销量230万辆的通用汽车,一定程度上就源于此。海量数据可以充当企业的护城河。
数据也可以成为抵抗竞争对手的方式。在科技行业,人们之所以对竞争怀有期望,是因为某个车库里的创业公司可能击败老牌企业,也有可能出现意料之外的技术变革。但在数据时代,这两种可能性都大幅降低。
巨头的监控系统覆盖整个经济:谷歌可以看到人们搜索什么,Facebook知道你在分享什么,亚马逊对你的购物习惯了如指掌。他们拥有应用商店、操作系统,还向创业公司出租计算资源。他们拥有“上帝之眼”,可以监控自己的市场和其他市场。他们能够看到哪些新产品和新服务受到追捧,因而能够及时模仿,甚至直接收购,避免遭遇更大的威胁。
很多人都认为,Facebook在2014年斥资220亿美元收购员工总数不到60人的WhatsApp,是为了消灭潜在竞争对手。通过竞争门槛和预警系统的恰当融合,便可借助数据有效遏制竞争。
改变反垄断思维
正是因为数据具备这些特性,才使得以往的反垄断措施效果降低。把谷歌分拆成5家公司不会阻止网络效应的扩张:假以时日,其中的一家公司仍会再次主导市场。因而需要辅以激进的思维——随着新的方法逐渐明确,两种想法逐渐进入人们的视野。
第一种的关键在于,反垄断官员需要从工业化时代过渡到21世纪。例如,他们以往在评估并购交易时,都会根据规模来判断是否介入,但现在需要通过企业的数据资产来评估交易影响。交易价格也会成为一个信号,帮助其判断老牌企业是否在通过收购排除威胁。
例如,Facebook愿意花这么高的价钱购买没有任何收入的WhatsApp,就应该引起警惕。反垄断官员还应该在分析市场动态时更加重视数据
例如,可以使用模拟器来寻找串谋定价算法,从而最大程度地促进竞争。
第二种则是降低在线服务提供商对数据的控制权,让数据提供者掌握更大的控制权。提升透明度可以带来一定的帮助:可以强迫企业向消费者披露他们所拥有的数据,以及他们借此获取的收入。
政府可以鼓励企业开发新型服务,甚至开放更多的政府数据库,把数字经济的关键组成部分当做公共基础设施来对待,就像印度的数字身份系统Aadhaar一样。还可以在用户许可的情况下强制分享某些数据——欧洲就在金融服务领域采取了这种方式,要求银行向第三方开放用户数据。
在信息时代开展反垄断并非易事,而且还会引发新的风险:例如,分享的数据越多,隐私威胁就越大。但如果政府不希望数据经济被少数巨头垄断,就必须尽快采取行动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27