京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据即价值,大数据加速实现汽车企业数字化转型
随着新能源革命和新一代信息技术如大数据、物联网的不断突破和创新,汽车产业加速向新能源、轻量化、智能智造的方向发展,我国汽车产业进入关键的变革期。当前,面对汽车行业过剩的降价压力下,为了吸引消费者,减少库存,车企们不得不参与到愈演愈烈的降价促销风暴中。为了实现汽车产业长远长效健康增长,汽车行业有必要远离上述短期、不可持续的需求刺激,如返利、折扣、甚至是零利息车贷等,应当借助大数据、信息化等技术手段实现产业链流程改进革新,达到长效健康发展。
传统汽车制造企业如何通过数据底层建设,发掘和实现基础数据价值及应用,引领企业变革和创新?在新形势下汽车品牌如何借助新一代信息技术如大数据发展和转型升级?5月5日,由工信部、浙江省人民政府指导,中国工业经济联合会、杭州市经济和信息化委员会等主办的“2017中国工业大数据大会暨钱塘峰会”在杭州召开;与此同时,“2017第九届中国汽车蓝皮书论坛”在京举办。汽车作为工业领域典型产业及伴随消费水平提高而受到越来越多关注的品类,受到各界的密切关注。工业4.0时代,大数据作为重要的生产要素,贯穿汽车所有流程的始终,渗透汽车产业链每一个环节。那么,汽车企业究竟该如何应用大数据技术突出重围,抢占高峰?
明确目标是前提
拥有数据是基础
汽车行业作为典型的集聚性生产制造产业,拥有来自于企业内部和企业外部的庞大数据源。内部数据来源:1.企业数据化档案2.企业信息化管理系统——MES、ERP、CRM、SCM等现代管理软件被广泛应用于日常生产和企业运营管理中,这些现代管理软件所产生的数据构成了企业最基础的线上数据来源。3.企业物联网络。外部数据来源:1.互联网大数据 2.物联网大数据 3.公共渠道大数据。大数据应用及价值发掘的基础在于海量多源数据的积累。
底层平台是支撑
当企业拥有了来自各个源头的大量数据后,如何利用这些数据并发掘价值是每一个传统汽车企业都需要考虑的现实问题。按照纵向划分,大数据行业可分为底层基础平台、中间层通用技术、上层行业应用。底层数据平台主要解决数据存储、数据分析、数据整合治理等问题,是大数据生态的基石。
数据质量是核心
数据应用是根本
数据是连接企业和企业数字化转型的“新电力”。大数据底层基础平台、中间层通用技术都是为了顶层数据应用服务。数据本身不具有价值,只有数据应用才体现其价值。数据的应用价值,是通过数据的流通和应用输出体现其价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04