
R语言中的回归诊断-car包
1、回归诊断的基本方法
opar<-par(no.readOnly=TRUE)
fit <- lm(weight ~ height, data = women)
par(mfrow = c(2, 2))
plot(fit)
par(opar)
为理解这些图形,我们来回顾一下OLS回归的统计假设。
(1)正态性(主要使用QQ图)当预测变量值固定时,因变量成正态分布,则残差值也应该是一个均值为0的正态分布。正态Q-Q图(Normal Q-Q,右上)是在正态分布对应的值下,标准化残差的概率图。若满足正态假设,那么图上的点应该落在呈45度角的直线上;若不是如此,那么就违反了正态性的假设。
(2)独立性 你无法从这些图中分辨出因变量值是否相互独立,只能从收集的数据中来验证。上面的例子中,没有任何先验的理由去相信一位女性的体重会影响另外一位女性的体重。假若你发现数据是从一个家庭抽样得来的,那么可能必须要调整模型独立性的假设。
(3)线性(使用左上角的图,该曲线尽量拟合所有点)
若因变量与自变量线性相关,那么残差值与预测(拟合)值就没有任何系统关联。换句话说,除了白噪声,模型应该包含数据中所有的系统方差。在“残差图与拟合图”Residuals
vs Fitted,左上)中可以清楚的看到一个曲线关系,这暗示着你可能需要对回归模型加上一个二次项。
(4)同方差性(左下角,点随机分布在曲线的周围)
若满足不变方差假设,那么在位置尺度图(Scale-Location
Graph,左下)中,水平线周围的点应该随机分布。该图似乎满足此假设。最后一幅“残差与杠图”(Residuals vs
Leverage,右下)提供了你可能关注的单个观测点的信息。从图形可以鉴别出离群点、高杠杆值点和强影响点
通过看图重新修改模型
newfit <- lm(weight ~ height + I(height^2), data = women[-c(13, 15),])
par(mfrow = c(2, 2))
plot(newfit)
par(opar)
2、使用改进的方法进行
主要使用的car包,进行回归诊断
(1)自变量的正态分布
qqPlot()函数提供了更为精确的正态假设检验方法
library(car)
fit <- lm(Murder ~ Population + Illiteracy + Income +
Frost, data = states)
qqPlot(fit, labels = FALSE, simulate = TRUE, main = "Q-Q Plot")
(2)误差的独立性
durbinWatsonTest(fit)
lag Autocorrelation D-W Statistic p-value
1 -0.2006929 2.317691 0.248
Alternative hypothesis: rho != 0
(3)线性相关性
crPlots(fit, one.page = TRUE, ask = FALSE)
(4)同方差性
1、car包提供了两个有用的函数,可以判断误差方差是否恒定。ncvTest()函数生成一个计分检验,零假设为误差方差不变,备择假设为误差方差随着拟合值水平的变化而变化。
2、spreadLevelPlot()函数创建一个添加了最佳拟合曲线的散点图,展示标准化残差绝对值与拟合值的关系
library(car)
ncvTest(fit)
Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 1.746514 Df = 1 p = 0.1863156
满足方差不变 p = 0.1863156
spreadLevelPlot(fit)
3、线性模型假设的综合验证
library(gvlma)
gvmodel <- gvlma(fit)
summary(gvmodel)
Call:
lm(formula = Murder ~ Population + Illiteracy + Income + Frost,
data = states)
Residuals:
Min 1Q Median 3Q Max
-4.7960 -1.6495 -0.0811 1.4815 7.6210
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.235e+00 3.866e+00 0.319 0.7510
Population 2.237e-04 9.052e-05 2.471 0.0173 *
Illiteracy 4.143e+00 8.744e-01 4.738 2.19e-05 ***
Income 6.442e-05 6.837e-04 0.094 0.9253
Frost 5.813e-04 1.005e-02 0.058 0.9541
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.535 on 45 degrees of freedom
Multiple R-squared: 0.567, Adjusted R-squared: 0.5285
F-statistic: 14.73 on 4 and 45 DF, p-value: 9.133e-08
ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
Level of Significance = 0.05
Call:
gvlma(x = fit)
Value p-value Decision
Global Stat 2.7728 0.5965 Assumptions acceptable.
Skewness 1.5374 0.2150 Assumptions acceptable.
Kurtosis 0.6376 0.4246 Assumptions acceptable.
Link Function 0.1154 0.7341 Assumptions acceptable.
Heteroscedasticity 0.4824 0.4873 Assumptions acceptable.
4、多重共线性
如何检测多重共线性
library(car)
vif(fit)
Population Illiteracy Income Frost
1.245282 2.165848 1.345822 2.082547
sqrt(vif(fit)) > 2
Population Illiteracy Income Frost
FALSE FALSE FALSE FALSE
如何解决多重共线性?
逐步回归法(此法最常用的,也最有效)
R语言回归分析中的异常值点的介绍
(1)离群点
如何识别离群点?
1、Q-Q图,落在置信区间带[-2,2]外的点即可被认为是离群点。
2、一个粗糙的判断准则:标准化残差值大于2或者小于2的点可能是离群
3、library(car)
outlierTest(fit) 显示离群点
rstudent unadjusted p-value Bonferonni p
Nevada 3.542929 0.00095088 0.047544
(2)高杠杆值点
它们是由许多异常的预测变量值组合起来的,与响应变量值没有关系
高杠杆值的观测点可通过帽子统计量(hat statistic)判断
hat.plot <- function(fit){
p <- length(coefficients(fit))
n <- length(fitted(fit))
plot(hatvalues(fit), main = "Index Plot of Hat Values")
abline(h = c(2, 3) * p/n, col = "red", lty = 2)
identify(1:n, hatvalues(fit), names(hatvalues(fit)))
}
hat.plot(fit)
(3)强影响点
强影响点,即对模型参数估计值影响有些比例失衡的点。例如,若移除模型的一个观测点时模型会发生巨大的改变,那么你就需要检测一下数据中是否存在强影响点了
cutoff <- 4/(nrow(states) - length(fit$coefficients) - 2)
plot(fit, which = 4, cook.levels = cutoff)
abline(h = cutoff, lty = 2, col = "red")
4、如何对线性模型进行改进?
1、删除观测点;
删除离群点通常可以提高数据集对于正态假设的拟合度,而强影响点会干扰结果,通常也会被删除。删除最大的离群点或者强影响点后,模型需要重新拟合
2、变量变换:
Box-Cox正态变换
library(car)
summary(powerTransform(states$Murder))
library(car)
boxTidwell(Murder ~ Population + Illiteracy, data = states)
3、添加或删除变量;
4、使用其他回归方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26