
关于大数据你必须了解的几个关键词
大数据分析的定义:
大数据分析,即对规模巨大的数据进行分析,能够高效存储和处理海量数据、并有效达成多种分析目标的工具及技术的集合。Gartner将大数据分析定义为追求显露模式检测和发散模式检测,以及强化对过去未连接资产的使用的实践和方法,意即一套针对大数据进行知识发现的方法。通俗地讲,大数据分析技术就是大数据的收集、存储、分析和可视化的技术,是一套能够解决大数据的4V【海量(Volume)、高速(Velocity)、多变(Variety)、真实(Veracity)】问题,分析出高价值(Value)的信息的工具集合。
大数据的特点:数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。在各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,需要搜索、处理、分析、归纳、总结其深层次的规律。
数据量:这个参数表示数据的数量,随着科学技术及互联网的发展,推动着大数据时代的来临,各行各业每天都在产生数量巨大的数据碎片,数据计量单位已从从Byte、KB、MB、GB、TB发展到PB、EB、ZB、YB甚至BB、NB、DB来衡量。
数据类型:
传统企业数据(Traditionalenterprisedata):包括CRMsystems的消费者数据,传统的ERP数据,库存数据以及账目数据等。 机器和传感器数据(Machine-generated/sensordata):包括呼叫记录(CallDetailRecords),智能仪表,工业设备传感器,设备日志(通常是Digitalexhaust),交易数据等。 社交数据(Socialdata):包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。
处理速度: 1秒定律,这一点也是和传统的数据挖掘技术有着本质的不同,物联网,云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。
大数据分析工具:
数据来自各个方面,在面对庞大而复杂的大数据,选择一个合适的处理工具显得很有必要,几款好用的处理工具如Hadoop、HPCC、Storm、Apache Drill、RapidMiner和Pentaho BI。工欲善其事,必须利其器,一个好的工具不仅可以使我们的工作事半功倍,也可以让我们在竞争日益激烈的云计算时代,挖掘大数据价值,及时调整战略方向。
大数据的应用:
大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。
营销:
主要用于管理和优化各种营销活动,如交叉销售、追加销售以及基于位置的一对一营销,并及时对客户需求进行完整评估等。
财政:
使用大数据技术可以预防欺诈检查、进行风险估计和管理、贸易监视、反洗钱、防止信贷风险等。
保险:
为规避风险,防止欺诈行为,由大数据分析师及时分析调整工作负荷,客户价值等。
零售:
1、分析商品
2、供应链管理分析
3、优化消费
通讯:
推进网络优化规划,满足不同客户需求,研发并推出新产品。
分析引擎:提供连接器,处理数据库。
支持大数据分析法:
面对庞杂而复杂的数据,必须有许多有效的解决方案,普通分析和高级分析都可以轻松提供集成,集中分析数据,在一个单一的平台上,满足分析引擎对营销方案的需求。
电子表格工具:
ODBC连接器将客户与Microsoft Excel连接在一起,利用精湛的分析工具如Qlik,MicroStrategy,TIBCO、Jaspersoft,Tableau等,在ODBC/REST APIS的帮助下,将协调R统计编程语言添加到金属板。
CRM和在线营销方案:
Salesforce.com提供的著名的CRM和在线营销解决方案适合处理业务,并及时提供必要的网络分析对策。
大数据的意义和前景:
总的来说,大数据是对大量、动态、能持续的数据,通过运用新系统、新工具、新模型进行挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目、可见一斑,因此不能了解到事物的真正本质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在人们面前。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01