
R语言实现Xbar-R控制图
Xbar-R控制图在质量管理中主要用于对计量数据进行检测,以达到控制对象质量的目的。
虽然用Excel可以轻松实现控制图的操作,不过作为R软件初学者,我试着用仅有的一点R语言知识进行了控制图的绘制操作。虽然画出来了但是代码实在是低效,以后再慢慢改进吧。
> data <- read.csv("kzt.csv") #打开数据
> D3 <- 0; D4 <- 2.114; A2 <-0.577 #三个系数,下文会用到
1.###计算各样本的极差
> r1 <- c()
> for(i in 1:20) r1[i] <- max(data[i,])-min(data[i,])
2.###计算极差上下界,并画出R控制图
> UCL_R <- D4*mean(r1)
> CL_R <- mean(r1)
> LCL_R <- D3*mean(r1)
> plot(r1, type="o",ylim=c(0,40),main="Range")
> abline(h=UCL_R, lty='dashed')
> abline(h=CL_R)
> abline(h=LCL_R, lty='dashed')
存在有出界值。利用which()函数确定出界位置(虽然能直接看出是样本7)
> which(r1>UCL_R)
[1] 7
3.###把样本7从数据中删掉然后对样本进行重新编号
> data <- data[-7,]
> rownames(data) <- 1:nrow(data)
4.###重新计算各样本的极差
> r11 <- c()
> for(i in 1:19) r11[i] <- max(data[i,])-min(data[i,])
5.###重新计算极差上下界,并画出R控制图(代码如2,将r1换成r11即可)
此时R图判稳。接下来作Xbar图。
6.###计算各样本的均值
> m1 <- c()
> for(i in 1:19) m1[i] <- apply(data[i,],1,mean)
7.###计算均值上下界,并画出Xbar控制图(套路跟画极值控制图差不多)
> UCL_M <- mean(m1)+A2*mean(r11)
> CL_M <- mean(m1)
> LCL_M <- mean(m1)-A2*mean(r11)
> plot(m1,type="o",ylim=c(60,90),main="Mean")
> abline(h=UCL_M, lty='dashed')
> abline(h=LCL_M, lty='dashed')
> abline(h=CL_M)
有出界值,找出出界值
> which(m1<LCL_M)
[1] 13
8.###把样本13从数据中删掉然后对样本进行重新编号
> data <- data[-13,]
> rownames(data) <- 1:nrow(data)
9.###重新计算各样本均值、极差和均值上下界,并画出R控制图和Xbar控制图
此时Xbar与R图都判稳,生产过程的均值与变异度都处于稳态。延长统计过程状态下的Xbar-R图的控制限,即可进入控制用控制图阶段,实现对过程的日常控制。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术》一书中指出:AI思维, ...
2025-07-17数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10