京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何让数据在产品中说话
为什么眼下大量企业的数据案例难以凸显价值?其中很重要的一点是,产品经理不懂数据。很多的产品经理还停留在以前做产品的阶段,靠感觉来做产品并不知道如何用数据来改善产品,更没意识到数据巳经成为了做产品的核心原材料。
过去的IT时代我们只是简单的使用数据,很少为了解决问题而提炼过数据。为什么我要强调提炼过的数据?因为如果我们要让数据产生价值,让更贴身的数据分析框架去解决用户的实际问题,
就需要将数据嵌入到产品或者生产流程中,在数据提炼的最后一公里,让数据在产品中“说话”。
上个月,我乘坐晚上七点的飞机从杭州到北京,结果七点整的时候,“飞常准”告诉我航班延误了,一个小时后,它再次告诉我延误继续,一直到晚上十一点。
这个 APP一直在给我提供信息,但是这些信息并不能给我更多的决策判断。如果当时这个APP的产品经理能够设想关联更多信息,他是否可以告诉我隔壁海航有班八点的航班可以立即改签飞走?这还不是数据产品,只是把信息善用在产品上,就立刻使得产品有了新价值。
但是很可怜,当时我并没有获得这样的信息服务,一直从七点等到半夜十一点,“飞常准”不断提供的延误信息只能让我越来越苦恼。
信息化和数据化的区别就在于,信息化为我们提供了参考,而数据化让我们可以直接行动。从给建议到直接行动,这之间有巨大鸿沟。
为什么数据价值没法落地?
如何让数据“说话”?在过去的信息时代,我们最擅长的方法是根据历史数据统计规律,指引行动。比如我们会统计过去一个月周五下午六点的出租车小费,计算出价平均数,然后告诉用户“建议给小费5元”。我们所使用的 数据大多都是单一角度而静态的数据。
而现在,我们更希望得到全景而动态的数据集。比如我们可以获取不同街道的堵塞程度,从而计算司机对小费的敏感度;
我们可以集合附近的天气情况,演唱会散场的时间数据等等来预测某个时段,某个地段可能成交的打车小费金额。这样的算法就是利用了更全面的大数据,通过更多的环 境动态数据,而非历史统计数据来提供服务。
未来,产品经理需要懂得如何用数据来增值。这其中有三个关键点:产品化,数据化和商业眼光。而眼下很多产品经理 更多关注的是产品化,忽略了数据化。
那么如何用数据来增值呢?让数据前置
假定我需要为女儿选择一所学校,如果要等三个月后考试成绩出来,才知道学校不靠谱,会不会太糟糕?如果我能够根据数据计算来衡量这所学校是否适合我的女儿,这就是数据前置。很多数据价值的关键就是数据前置,让更多数据嵌入到产品之中,产生价值。
另一个更容易理解的案例是谷歌无人汽车。谷歌无人汽车就是在用数据分析框架来实现服务。这一服务的前提是数据的质量、稳定性和计算速度都已经足够完善,使得“数据指引行动”进入了完全自动的情境。谷歌的工程师用上千个模型来支持这一数据分析框架,以保证无人汽车在行驶中不会出现意外。
反观眼下大量公司的业务,很多公司还停留在用统计数据做决策参考,如果我们将数据分析框架应用到公司业务中,我们就会发现一个全新价值。
如何将数据嵌入业务?
也许你会问,我们一直在说“将数据嵌入业务”中,在实际操作层面,我们应该如何嵌入?
在我所在的工作团队中,我遭遇的困惑是,产品团队、数据团队和运营团队给我的方案总是如一盘散沙难以串联。
很简单,产品团队很难有数据概念,数据团队也很少有产品理念,而运营团队更不习惯用数据做决策。但难题在于,如果没有办法把这三个团队链接 在一起,数据价值从何说起呢。
每当遇到这种情况,我会问自己的团队这些问题:**什么问题?谁的问题?现在需要解决么?有数据可以满足解决么?假如数据皆可得,那么解决方案是什么?**
尽管这些问题有助于梳理思路,产品、运营和数据团队之间的交叉还是非常困难。 我通常的解决方案是,询问团队成员在特定生产流程中(有时同时也是一个决策流程),
每天需要做多少决策?哪些决策点是否可以用数据替代解决?通过梳理决策点来寻找“数据嵌入”的灵感,是一个非常有效的方法。
也许不用太久时间,产品经理们就会发现数据化对于产品的重要意义。数据必须要和产品结合,不然数据的价值难以落地。让数据变成产品,是产品经理最大的难点,也是产品经理最大的机遇和想象力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11