京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R+SQLServer的大数据管理
在学习和使用R语言的过程中,在数据文件的选择方面,由于csv文件在各大数据库软件以及统计分析软件都有很好的兼容性,所以一直被广泛地用作数据储存传输。笔者最近手头上有一个10多G的csv,大概有2千5百万条的记录,这真的让我以及我的R语言感到亚历山大。Excel不用说更是打不开了(Excel 2003及以前的版本最大仅支持65,536行),SAS软件花费一些时间勉强能打开,但是对某些中文的格式不兼容(特别是某些变量包含逗号的时候)。该怎么办呢?这是大数据的问题吗?怎么那么不小心就被我碰上了?
今天我们就谈谈“大数据”这个老话题。自2012年以来,大数据(Big Data)已经上过《纽约时报》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,在国内更是被炒得热火朝天,互联网、工商业、高校等都纷纷进行探索讨论。大数据战略甚至成为了我们国家“十三五”十四大战略之一。
虽然“大数据”的概念很宽泛,是对规模庞大的数据对象,及其处理和应用活动的统一,但我们今天就浅谈一下它的“大”。大数据的“大”,一般是指在10TB规模左右大型数据集,但在实际应用中,很多用户把多个数据集放在一起,已经形成了PB级的数据量;例如,百度的首页导航每天需要提供的数据超过1.5PB,这些数据如果打印出来将超过5千亿张A4纸。也曾经有报道,截至20世纪末,人类生产的所有印刷材料的数据量仅为200PB。好像有点扯远了~
处理这些TB、PB级的数据,我们不妨试试强大的SQL Server。它是是微软公司推出的一个具有使用方便、可伸缩性好、与相关软件集成程度高等优点的全面的关系型数据库管理平台,可以满足数据爆炸时代和数据驱动应用程序的需求。
令人兴奋的是,微软在2016年6月正式发布的SQL Server 2016将支持R语言编程(包括大数据的算法)。据了解,这次更新是微软对Revolution Analytics公司收购的结果,该公司此前的产品Revolution R就是一款强大的大数据分析工具。所以说SQL Server 2016代表了微软向大数据及机器学习领域迈出的第一步。
感兴趣的朋友可以下载试用一下(当然,以上所说都是商业收费软件)。为了初探一下SQL Server强大的数据管理功能,下面简单介绍一下通过R语言对SQL Server数据库进行读写。使用测试系统环境为win 10 家庭中文版、SQL Server 2008 R2、R 3.3.3。
(1)SQL Server的下载安装。网上有很多相关的资源,本公众号主页菜单“资源共享”下的“实用软件”也有收录。当然大家也可以下载使用精简版的MySQL(免费软件)。安装下载好之后,如下图添加名为“test”的数据库。
(2)将test数据库添加到计算机的ODBC数据源管理器中。在控制面板的“管理工具”中打开“ODBC 数据源(64 位)”,如下图设置好,其他步骤默认设置即可。
(3)在R软件中通过RODBC包对test数据库进行数据的保存和读取。测试数据选择我们常用的R软件自带鸢尾花(iris)数据。
install.packages("RODBC")#安装RODBC包
library(RODBC)#加载RODBC包
test=odbcConnect("test")#连接到SQL Server中的test数据库设置
data(iris)#提取iris数据
sqlSave(test,iris)#把iris数据保存到test数据库
iris.test=sqlQuery(test,"select * from iris")#读取数据库中的iris数据
str(iris.test); str(iris)#比较两个数据来源的数据
就这样,我们在使用R语言的强大的数据整理和分析功能的同时,借助SQL Server强大的数据存储功能,可以说正如微软一样向大数据及机器学习领域又迈出一步。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12