京公网安备 11010802034615号
经营许可证编号:京B2-20210330
主成分分析在SPSS中的应用
一、引言
主成分分析的背景是研究中经常会遇到多指标的问题,这些指标间往往存在一定的相关,直接纳入分析不仅复杂,变量间难以取舍,而且可能因多元共线性而无法得出正确结论。主成分分析的目的就是通过线性变换,将原来的多个指标组合成相互独立的少数几个能充分反映总体信息的指标,便于进一步分析。
二、方法简介
在主成分分析中,提取出的每个主成分都是原来多个指标的线性组合如有两个原始变量x1和x2,则一共可提取出两个主成分如下:
Z1=b11*1+b21*2
Z2=b12*1+b22*2
原则上如果有n个变量,则最多可以提取出n个主成分,但如果将它们全部提取出来就失去了该方法简化数据的实际意义。多数情况下提取出前2~3个主成分已包含了90%以上的信息,其他的可以忽略不计。
提取出的主成分能包含主要信息即可,不一定非要有准确的实际含义。
三、分析实例
本例采用《中国统计年鉴2003》中10个沿海省市的10个经济指标进行主成分分析。
指标包括:GDP、人均GDP、农业增加值、工业增加值、第三产业增加值、固定资产投资、基本建设投资、国内生产总值占全国比重(%)、海关出口总额和地方财政收入。
参见下面数据:
四、SPSS操作
下面利用SPSS17.0对上述数据进行分析。
具体操作步骤如下:
在SPSS主菜单中选择“分析→降维→因子分析”弹出下面对话框,将除省市外的10个经济指标选入“变量”。
点击“描述”,选择“原始分析结果”和“系数”。点击“继续”
选择好各种选项后,点击“确定”,得到结果。
五、输出结果
相关矩阵
从相关矩阵表中可知许多变量之间直接的相关性比较强,证明他们存在信息上的重叠。
解释的总方差
提取方法:主成份分析。
通过方差分解主成分提取分析表可知, 提取了2个主成分。
成份矩阵a

提取方法:主成分分析法。
a. 已提取了 2 个成份。
从成分矩阵表给出了在这2个主成分上的负荷值。根据在每个因子上负荷最高的那些变量来说明主成分的意义。
由于每一个载荷量表示主成分与对应变量的相关系数,所以新变量的表达不能从输出窗口中直接得到,要用成分矩阵表中的数据除以主成分相对应的特征值开平方根便得到两个主成分中每个指标所对应的系数。得到主成分表达式为:
F1=0.353ZX1+0.042ZX2-0.041ZX3+0.364ZX4+0.367ZX5+0.366ZX6+0.352ZX7+0.364ZX8+0.298ZX9+0.355ZX10
F2=0.175ZX1-0.741ZX2+0.609ZX3-0.004ZX4+0.063ZX5-0.061ZX6-0.022ZX7+0.158ZX8-0.046ZX9-0.115ZX10
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12