京公网安备 11010802034615号
经营许可证编号:京B2-20210330
主成分分析在SPSS中的应用
一、引言
主成分分析的背景是研究中经常会遇到多指标的问题,这些指标间往往存在一定的相关,直接纳入分析不仅复杂,变量间难以取舍,而且可能因多元共线性而无法得出正确结论。主成分分析的目的就是通过线性变换,将原来的多个指标组合成相互独立的少数几个能充分反映总体信息的指标,便于进一步分析。
二、方法简介
在主成分分析中,提取出的每个主成分都是原来多个指标的线性组合如有两个原始变量x1和x2,则一共可提取出两个主成分如下:
Z1=b11*1+b21*2
Z2=b12*1+b22*2
原则上如果有n个变量,则最多可以提取出n个主成分,但如果将它们全部提取出来就失去了该方法简化数据的实际意义。多数情况下提取出前2~3个主成分已包含了90%以上的信息,其他的可以忽略不计。
提取出的主成分能包含主要信息即可,不一定非要有准确的实际含义。
三、分析实例
本例采用《中国统计年鉴2003》中10个沿海省市的10个经济指标进行主成分分析。
指标包括:GDP、人均GDP、农业增加值、工业增加值、第三产业增加值、固定资产投资、基本建设投资、国内生产总值占全国比重(%)、海关出口总额和地方财政收入。
参见下面数据:
四、SPSS操作
下面利用SPSS17.0对上述数据进行分析。
具体操作步骤如下:
在SPSS主菜单中选择“分析→降维→因子分析”弹出下面对话框,将除省市外的10个经济指标选入“变量”。
点击“描述”,选择“原始分析结果”和“系数”。点击“继续”
选择好各种选项后,点击“确定”,得到结果。
五、输出结果
相关矩阵
从相关矩阵表中可知许多变量之间直接的相关性比较强,证明他们存在信息上的重叠。
解释的总方差
提取方法:主成份分析。
通过方差分解主成分提取分析表可知, 提取了2个主成分。
成份矩阵a

提取方法:主成分分析法。
a. 已提取了 2 个成份。
从成分矩阵表给出了在这2个主成分上的负荷值。根据在每个因子上负荷最高的那些变量来说明主成分的意义。
由于每一个载荷量表示主成分与对应变量的相关系数,所以新变量的表达不能从输出窗口中直接得到,要用成分矩阵表中的数据除以主成分相对应的特征值开平方根便得到两个主成分中每个指标所对应的系数。得到主成分表达式为:
F1=0.353ZX1+0.042ZX2-0.041ZX3+0.364ZX4+0.367ZX5+0.366ZX6+0.352ZX7+0.364ZX8+0.298ZX9+0.355ZX10
F2=0.175ZX1-0.741ZX2+0.609ZX3-0.004ZX4+0.063ZX5-0.061ZX6-0.022ZX7+0.158ZX8-0.046ZX9-0.115ZX10
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31