
SAS fastclus语句_数据分析师
一、快速聚类适用于大数据样本
1. 常用语法格式:
PROC FASTCLUS MAXCLUSTERS=n | RADIUS=t ;
VAR variables ;
ID variables ;
必须至少定义maxclusters=或radius=中的一个。
2. 常用选项及语句说明:
data= 指定聚类过程的输入数据集,该数据集必须是观测样本(坐标数据)。
maxclusters=k 指定所允许的最大分类个数(最大凝聚点个数),缺省时假定为100。
radius=r 指定选取新凝聚点的最小距离准则,缺省是假定为0。
初始凝聚点系统顺序选取时,总是将第一个完整的观测选取为第一个凝聚点,再顺序选取需满足下面2个条件的完整观测为接下来的凝聚点:
1.凝聚点的个数未达到“maxclusters=”指定值;
2.与所有已有凝聚点间的距离均大于“radius=”指定值
直到不满足条件是为止。
replace=full|part|none|random 控制初始凝聚点选取的替换检验。
上述初始凝聚点系统顺序选取中:
若满足条件1而不满足条件2时,停止凝聚点的选取。
若满足条件2而不满足条件1时,对已选凝聚点进行替换检验。2种方式:
替换检验1:若当前观测(记obs)与自身最近的已选凝聚点之间的距离d大于已选凝聚点间相互的最小距离d_min(d_i,d_j)时,用当前观测替换已选凝聚点间距离最近的两个凝聚点中的一个,使得替换后当前观测与另一个凝聚点距离最远。
替换检验2:在不满足替换检验1的情况下,若obs到除最近凝聚点外的所有其他凝聚点的最小距离大于最近凝聚点到所有其他凝聚点的最小距离,则用obs替换与之距离最近的凝聚点。
“full”为缺省值,指定两种检验都进行;“part”指定进行第一种检验;“none”指定不进行检验
replace= random 指定初始凝聚点为系统随机选取。
常与选项random=n一起使用,n为正整数,为生成伪随机数提供种子值,缺省时由计算机时间提供。
seed= 指定一个数据集,在其中选取初始凝聚点,即为指定初始凝聚点法。
没有此选项时,将从“data=”指定的数据集中选取k个观测作为k类得初始凝聚点。
drift 指定逐个初始分类,并要求执行逐个修改法,缺省时执行按批修改法。
按批修改法准则是使所有的样品点与其凝聚点距离最近,等全部药品调整完毕后才改变类得凝聚点。逐个修改法是每个样品一旦调整后立即改变凝聚点,其又称为“K-means”,即K均值聚类。
maxiter= 指定修改法的最大迭代次数,缺省时为1,即样本初始分类。
converge=c 指定聚类迭代收敛的判别准则,当凝聚点改变的最大距离小于或等于初始凝聚点间的最小距离乘以c时,认为该聚类过程收敛,迭代结束,缺省时c为0.02。
out= 指定过程输出的数据集。
本文来源:CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15