
R语言-组间差异的非参数检验
7.5 组间差异的非参数检验
如果数据无法满足t检验或ANOVA的参数假设,可以转而使用非参数方法。举例来说,若结果变量在本质上就严重偏倚或呈现有序关系,那么你可能会希望使用本节中的方法。
7.5.1 两组的比较
若两组数据独立,可以使用Wilcoxon秩和检验(更广为人知的名字是Mann–Whitney U检验)来评估观测是否是从相同的概率分布中抽得的(即,在一个总体中获得更高得分的概率是否比另一个总体要大)。调用格式为:
其中的y是数值型变量,而x是一个二分变量。调用格式或为:
其中的y1和y2为各组的结果变量。
可选参数data的取值为一个包含了这些变量的矩阵或数据框。
默认进行一个双侧检验。你可以添加参数exact来进行精确检验,指定alternative="less"或alternative="greater"进行有方向的检验。
如果你使用Mann–Whitney U检验回答上一节中关于监禁率的问题,将得到这些结果:
你可以再次拒绝南方各州和非南方各州监禁率相同的假设(p < 0.001)。Wilcoxon符号秩检验是非独立样本t检验的一种非参数替代方法。它适用于两组成对数据和无法保证正态性假设的情境。调用格式与Mann–Whitney U检验完全相同,不过还可以添加参数paired=TRUE。让我们用它解答上一节中的失业率问题:
你再次得到了与配对t检验相同的结论。在本例中,含参的t检验和与其作用相同的非参数检验得到了相同的结论。当t检验的假设合理时,参数检验的功效更强(更容易发现存在的差异)。而非参数检验在假设非常不合理时(如对于等级有序数据)更适用。
7.5.2 多于两组的比较
在要比较的组数多于两个时,必须转而寻求其他方法。考虑7.4节中的state.x77数据集。它包含了美国各州的人口、收入、文盲率、预期寿命、谋杀率和高中毕业率数据。如果你想比较美国四个地区(东北部、南部、中北部和西部)的文盲率,应该怎么做呢?这称为单向设计(one-way design),我们可以使用参数或非参数的方法来解决这个问题。如果无法满足ANOVA设计的假设,那么可以使用非参数方法来评估组间的差异。如果各组独立,则Kruskal—Wallis检验将是一种实用的方法。如果各组不独立(如重复测量设计或随机区组设计),那么Friedman检验会更合适。
Kruskal–Wallis检验的调用格式为:
其中的y是一个数值型结果变量, A是一个拥有两个或更多水平的分组变量(grouping variable)。(若有两个水平,则它与Mann–Whitney U检验等价。)而Friedman检验的调用格式为:
其中的y是数值型结果变量, A是一个分组变量, 而B是一个用以认定匹配观测的区组变量 (blocking variable) 。在以上两例中, data皆为可选参数,它指定了包含这些变量的矩阵或数据框。
让我们利用Kruskal–Wallis检验回答文盲率的问题。首先,你必须将地区的名称添加到数据集中。这些信息包含在随R基础安装分发的state.region数据集中。
现在就可以进行检验了:
显著性检验的结果意味着美国四个地区的文盲率各不相同(p
<0.001)。虽然你可以拒绝不存在差异的原假设,但这个检验并没有告诉你哪些地区显著地与其他地区不同。要回答这个问题,你可以使用Mann–Whitney
U检验每次比较两组数据。一种更为优雅的方法是在控制犯第一类错误的概率(发现一个事实上并不存在的差异的概率)的前提下,执行可以同步进行的多组比较,这样可以直接完成所有组之间的成对比较。
npmc包提供了所需要的非参数多组比较程序。
说实话,我将本章标题中基本的定义拓展了不止一点点,但由于在这里讲非常合适,所以希望你能够容忍我的做法。第一步,请先安装npmc包。此包中的npmc()函数接受的输入为一个两列的数据框,其中一列名为var(因变量),另一列名为class(分组变量)。代码清单7-20中包含了可以用来完成计算的代码。
调用了npmc的语句生成了六对统计比较结果(东北部对南部、东北部对中北部、东北部对西部、南部对中北部、南部对西部,以及中北部对西部) 。可以从双侧的p值(p.value.2s)看出南部与其他三个地区显著不同,而其他三个地区之间并没有什么不同。在 处可以看到南部的文盲率中间值更高。注意, npmc在计算积分时使用了随机数,所以每次计算的结果会有轻微的不同。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26