
R语言里面的因子
R语言中的因子确实不好理解,很多人都这么觉得。在R语言中,因子(factor)表示的是一个符号、一个编号或者一个等级,即,一个点。例如,人的个数可以是1,2,3,4......那么因子就包括,1,2,3,4.....还有统计量的水平的时候用到的高、中、低,也是因子,因为他是一个点。与之区别的向量,是一个连续性的值,例如,数值中有1,1.1,1.2......可以作为数值来计算,而因子则不可以。如果用我自己的理解,简单通俗来讲:因子是一个点,向量是一个有方向的范围。在R中,如果把数字作为因子,那么在导入数据之后,需要将向量转换为因子(factor),而因子在整个计算过程中不再作为数值,而是一个"符号"而已。因子的水平就是因子的所有不相同的符号的集合。
创建因子的函数介绍如下:
factor(x, levels = sort(unique(x), na.last = TRUE),
labels = levels, exclude = NA, ordered = is.ordered(x))
levels 用来指定因子可能的水平(缺省值是向量x中互异的值);labels
用来指定水平的名字;exclude表示从向量x中剔除的水平值;ordered是
一个逻辑型选项用来指定因子的水平是否有次序。回想数值型或字符型
的x。
> factor(1:3)
[1] 1 2 3
Levels: 1 2 3
> factor(1:3, levels=1:5)
[1] 1 2 3
Levels: 1 2 3 4 5
> factor(1:3, labels=c("A", "B", "C"))
[1] A B C
Levels: A B C
> factor(1:5, exclude=4)
[1] 1 2 3 NA 5
Levels: 1 2 3 5
函数levels用来提取一个因子中可能的水平值:
> f <- factor(c(2, 4), levels=2:5)
> f
[1] 2 4
Levels: 2 3 4 5
> levels(f)
[1] "2" "3" "4" "5"
因子用来存储类别变量(categorical variables)和有序变量,这类变量不能用来计算而只能用来分类或者计数。因子表示分类变量,有序因子表示有序变量。生成因子数据对象的函数是factor(),语法是factor(data, levels, labels, ...),其中data是数据,levels是因子水平向量,labels是因子的标签向量。
1、创建一个因子。
例1:
>colour <- c('G', 'G', 'R', 'Y', 'G', 'Y', 'Y', 'R', 'Y')
>col <- factor(colour)
>col1 <- factor(colour, levels = c('G', 'R', 'Y'), labels = c('Green', 'Red', 'Yellow')) #labels的内容替换colour相应位置对应levels的内容
>col2 <- factor(colour, levels = c('G', 'R', 'Y'), labels = c('1', '2', '3'))
>col_vec <- as.vector(col2) #转换成字符向量
>col_num <- as.numeric(col2) #转换成数字向量
>col3 <- factor(colour, levels = c('G', 'R'))
2、创建一个有序因子。
例1:
>score <- c('A', 'B', 'A', 'C', 'B')
>score1 <- ordered(score, levels = c('C', 'B', 'A'));
>score1
[1] A B A C B
Levels: C < B < A
3、用cut()函数将一般的数据转换成因子或有序因子。
例1:
>exam <- c(98, 97, 52, 88, 85, 75, 97, 92, 77, 74, 70, 63, 97, 71, 98,
65, 79, 74, 58, 59, 60, 63, 87, 82, 95, 75, 79, 96, 50, 88)
>exam1 <- cut(exam, breaks = 3) #切分成3组
>exam1
[1] (82,98] (82,98] (50,66] (82,98] (82,98] (66,82] (82,98] (82,98] (66,82]
[10] (66,82] (66,82] (50,66] (82,98] (66,82] (82,98] (50,66] (66,82] (66,82]
[19] (50,66] (50,66] (50,66] (50,66] (82,98] (66,82] (82,98] (66,82] (66,82]
[28] (82,98] (50,66] (82,98]
Levels: (50,66] (66,82] (82,98]
>exam2 <- cut(exam, breaks = c(0, 59, 69, 79, 89, 100)) #切分成自己设置的组
> exam2
[1] (89,100] (89,100] (0,59] (79,89] (79,89] (69,79] (89,100] (89,100]
[9] (69,79] (69,79] (69,79] (59,69] (89,100] (69,79] (89,100] (59,69]
[17] (69,79] (69,79] (0,59] (0,59] (59,69] (59,69] (79,89] (79,89]
[25] (89,100] (69,79] (69,79] (89,100] (0,59] (79,89]
Levels: (0,59] (59,69] (69,79] (79,89] (89,100]
>attr(exam1, 'levels');
[1] "(50,66]" "(66,82]" "(82,98]"
>attr(exam2, 'levels');
[1] "(0,59]" "(59,69]" "(69,79]" "(79,89]" "(89,100]"
>attr(exam2, 'class')
[1] "factor"
#一个有序因子
> x <- factor(rep(1:5,3))
> ordered(x,labels = c('a1','a2','a3','a4','a5'))
[1] a1 a2 a3 a4 a5 a1 a2 a3 a4 a5 a1 a2 a3 a4 a5
Levels: a1 < a2 < a3 < a4 < a5
关于因子就说到这里,实际用的非常少!对于逻辑数据以后会遇到再说,就不专门讲了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26