京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言里面的因子
R语言中的因子确实不好理解,很多人都这么觉得。在R语言中,因子(factor)表示的是一个符号、一个编号或者一个等级,即,一个点。例如,人的个数可以是1,2,3,4......那么因子就包括,1,2,3,4.....还有统计量的水平的时候用到的高、中、低,也是因子,因为他是一个点。与之区别的向量,是一个连续性的值,例如,数值中有1,1.1,1.2......可以作为数值来计算,而因子则不可以。如果用我自己的理解,简单通俗来讲:因子是一个点,向量是一个有方向的范围。在R中,如果把数字作为因子,那么在导入数据之后,需要将向量转换为因子(factor),而因子在整个计算过程中不再作为数值,而是一个"符号"而已。因子的水平就是因子的所有不相同的符号的集合。
创建因子的函数介绍如下:
factor(x, levels = sort(unique(x), na.last = TRUE),
labels = levels, exclude = NA, ordered = is.ordered(x))
levels 用来指定因子可能的水平(缺省值是向量x中互异的值);labels
用来指定水平的名字;exclude表示从向量x中剔除的水平值;ordered是
一个逻辑型选项用来指定因子的水平是否有次序。回想数值型或字符型
的x。
> factor(1:3)
[1] 1 2 3
Levels: 1 2 3
> factor(1:3, levels=1:5)
[1] 1 2 3
Levels: 1 2 3 4 5
> factor(1:3, labels=c("A", "B", "C"))
[1] A B C
Levels: A B C
> factor(1:5, exclude=4)
[1] 1 2 3 NA 5
Levels: 1 2 3 5
函数levels用来提取一个因子中可能的水平值:
> f <- factor(c(2, 4), levels=2:5)
> f
[1] 2 4
Levels: 2 3 4 5
> levels(f)
[1] "2" "3" "4" "5"
因子用来存储类别变量(categorical variables)和有序变量,这类变量不能用来计算而只能用来分类或者计数。因子表示分类变量,有序因子表示有序变量。生成因子数据对象的函数是factor(),语法是factor(data, levels, labels, ...),其中data是数据,levels是因子水平向量,labels是因子的标签向量。
1、创建一个因子。
例1:
>colour <- c('G', 'G', 'R', 'Y', 'G', 'Y', 'Y', 'R', 'Y')
>col <- factor(colour)
>col1 <- factor(colour, levels = c('G', 'R', 'Y'), labels = c('Green', 'Red', 'Yellow')) #labels的内容替换colour相应位置对应levels的内容
>col2 <- factor(colour, levels = c('G', 'R', 'Y'), labels = c('1', '2', '3'))
>col_vec <- as.vector(col2) #转换成字符向量
>col_num <- as.numeric(col2) #转换成数字向量
>col3 <- factor(colour, levels = c('G', 'R'))
2、创建一个有序因子。
例1:
>score <- c('A', 'B', 'A', 'C', 'B')
>score1 <- ordered(score, levels = c('C', 'B', 'A'));
>score1
[1] A B A C B
Levels: C < B < A
3、用cut()函数将一般的数据转换成因子或有序因子。
例1:
>exam <- c(98, 97, 52, 88, 85, 75, 97, 92, 77, 74, 70, 63, 97, 71, 98,
65, 79, 74, 58, 59, 60, 63, 87, 82, 95, 75, 79, 96, 50, 88)
>exam1 <- cut(exam, breaks = 3) #切分成3组
>exam1
[1] (82,98] (82,98] (50,66] (82,98] (82,98] (66,82] (82,98] (82,98] (66,82]
[10] (66,82] (66,82] (50,66] (82,98] (66,82] (82,98] (50,66] (66,82] (66,82]
[19] (50,66] (50,66] (50,66] (50,66] (82,98] (66,82] (82,98] (66,82] (66,82]
[28] (82,98] (50,66] (82,98]
Levels: (50,66] (66,82] (82,98]
>exam2 <- cut(exam, breaks = c(0, 59, 69, 79, 89, 100)) #切分成自己设置的组
> exam2
[1] (89,100] (89,100] (0,59] (79,89] (79,89] (69,79] (89,100] (89,100]
[9] (69,79] (69,79] (69,79] (59,69] (89,100] (69,79] (89,100] (59,69]
[17] (69,79] (69,79] (0,59] (0,59] (59,69] (59,69] (79,89] (79,89]
[25] (89,100] (69,79] (69,79] (89,100] (0,59] (79,89]
Levels: (0,59] (59,69] (69,79] (79,89] (89,100]
>attr(exam1, 'levels');
[1] "(50,66]" "(66,82]" "(82,98]"
>attr(exam2, 'levels');
[1] "(0,59]" "(59,69]" "(69,79]" "(79,89]" "(89,100]"
>attr(exam2, 'class')
[1] "factor"
#一个有序因子
> x <- factor(rep(1:5,3))
> ordered(x,labels = c('a1','a2','a3','a4','a5'))
[1] a1 a2 a3 a4 a5 a1 a2 a3 a4 a5 a1 a2 a3 a4 a5
Levels: a1 < a2 < a3 < a4 < a5
关于因子就说到这里,实际用的非常少!对于逻辑数据以后会遇到再说,就不专门讲了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27