
智慧水务与大数据应用
智慧水务是通过数采仪、无线网络、水质水压表等在线监测设备实时感知城市供排水系统的运行状态,并采用可视化的方式有机整合水务管理部门与供排水设施,形成“城市水务物联网”,并可将海量水务信息进行及时分析与处理,并做出相应的处理结果辅助决策建议,以更加精细和动态的方式管理水务系统的整个生产、管理和服务流程,从而达到“智慧”的状态。在水资源短缺、水污染加剧的形势下,智慧水务正成为市场的热点。
根据预测,我国智慧水务市场规模超千亿。我国智慧水务的市场很大,但目前的市场也是无序的。归结起来,主要体现在三个方面:
目前对于智慧水务尚无一个行业通则的标准,有的中国水务企业对智慧水务的概念认识不清,以为“数字化改造”就是智慧水务;有的企业在投资智慧水务的过程中总想一蹴而就;
在一些项目的执行过程中,市政管网资料分散,很多数据或是丢失或是不连通,有非常多的数据孤岛需要去打通;
管网信息化、自动化、智能化欠缺等。目前,还有很多作业操作基本依赖人工,基本数据靠人工收集,出现的问题靠人工分析等。
大数据推进智慧水务建设
大数据指具有4V特性的数据:Volume海量、Velocity 增长快、Variety多样化、Value价值动态。为了分析处理大数据,相应产生的“块级虚拟化、挖掘建模、机器自学习......”等新技术,称为大数据技术。大数据技术大大解放了人们的分析能力。
可以分析更多的数据,甚至是相关的所有数据,而不再依赖于随机抽样;
研究数据如此之多,以至于不再热衷于追求精确度;
不必拘泥于对因果关系的探究,而可以在相关关系中发现大数据的潜在价值。
从智慧供电到智慧供水
法国电力集团EDF是全球领先的电力基础设施服务提供商。为推进智慧供电,公司在全法安装3500万智能电表,每10分钟抄表一次采集个体家庭的用电负荷数据,并对用户用电负荷曲线进行集中处理。公司专门成立企业数据分析中心,整合电表数据、气象数据、用电合同信息及电网数据等,来对销售管理提供运营分析支撑,例如:预测各类一级市场和大众市场内中小企业和家庭住户的电力消耗和需求趋势,营业收入,成本和利润率,从而帮助营销部门更为精确地找准目标客户,推出更具盈利性的新产品……总体上,EDF通过对数据资产分析利用,实现了精确定位目标客户、推出更具盈利性的新产品、扩大企业市场份额、提升客户服务响应速度、提升企业商业运作灵活度等一系列成效。
在法国电力集团的经验中,包括了诸如:引入并强化数据分析处理能力、由专业的大数据运营机构开展运营管理支撑等措施。而我们首先要注意到搜集数据、完善数据基础,积累数据资产的重要性。EDF通过智能表计的安装,实现精细化测量,在对消费者提供服务过程中,积累数据资源。通过将用电数据、合同数据、电网数据等各类数据融合,进行专业分析与管理,实现紊乱的数据资源向有效的数据资产的转化。同为能源企业,智慧水务的建设也可以从表计数据的规范处理和应用起步。美国加州智能精细化供水管理的开展过程中,供水公司就十分强调对智能水表数据的采集和应用。他们联合科技企业,加快普及智能水表,以“每小时收集近7亿个数据点”的规模收集海量的细粒度数据(ne-grained data);并把这些信息与数十个关于住房地点、房龄、气候和入住率的数据点整合到一起进行分析、预测,为用户提供水务互联网服务:给用户提供个性化用水报告、为节水行为打分、提示花园灌溉许可日期和许可量……在水资源极度紧张的状况下,加州智慧水务项目仍实现了平均5%的节水幅度。
大数据是推进智慧水务建设的核心问题。如果缺乏大数据分析处理,智慧水务的“大脑”就不够发达,“智商”就不够高,能力就不够强。大数据处理、挖掘模型等技术相对通用,但产生出融合智慧的基础数据,却需要一点一滴地积累。当前建设智慧水务,积累有效的“海量数据”已成为当务之急。
有效的数据采集是进行大数据分析的前提基础
为有效地采集数据、丰富信息流,必须不断地研发、改进技术以增强设备的采集能力,加大流量、水质、水压等方面各类新型传感设备的应用部署和普及。水表遍布千家万户,水表流量数据中蕴含着社会生产生活各方面的丰富信息,是行业天然的数据价值源泉。但我国目前的智能远传水表,不仅规模有限,并且在数据采集方面上仍只单纯要求“替代人工抄表,完成简单的水费收费”的功能,不仅未能体现投资价值,更难以满足未来的大数据需求,从而产生“未来重复投资、拖延水务企业智慧化进程”的风险。
智慧水务需要高密度、高精度、高价值的水务数据的大规模海量积累;在某些特定场景,比如特种工业企业水资源消耗监测时,对数据的采集和实时性的要求更为苛刻,要求“实时、完整、精确地采集到流量过程曲线数据”。为达到这些智慧应用场景的支撑要求,智能水表需要向1L级(0.001m3)、分钟级的流量数据采集精度和颗粒细度目标努力,这一要求对行业的技术、工艺都提出了较高的挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19