
1、R语言关于k-means聚类
数据集格式如下所示:
[plain] view plain copy
,河东路与岙东路&河东路与聚贤桥路,河东路与岙东路&新悦路与岙东路,河东路与岙东路&火炬路与聚贤桥路,河东路与岙东路&火炬路与汇智桥路,河东路与岙东路&汇智桥与智力岛路,新悦路与岙东路&火炬路与聚贤桥路,新悦路与岙东路&河东路与聚贤桥路,新悦路与岙东路&河东路与岙东路,新悦路与岙东路&汇智桥与智力岛路,新悦路与岙东路&火炬路与汇智桥路,河东路与聚贤桥路&新悦路与岙东路,河东路与聚贤桥路&火炬路与聚贤桥路,河东路与聚贤桥路&河东路与岙东路,河东路与聚贤桥路&汇智桥与智力岛路,河东路与聚贤桥路&火炬路与汇智桥路,火炬路与汇智桥路&新悦路与岙东路,火炬路与汇智桥路&火炬路与聚贤桥路,火炬路与汇智桥路&汇智桥与智力岛路,火炬路与汇智桥路&河东路与聚贤桥路,火炬路与汇智桥路&河东路与岙东路,汇智桥与智力岛路&新悦路与岙东路,汇智桥与智力岛路&火炬路与聚贤桥路,汇智桥与智力岛路&火炬路与汇智桥路,汇智桥与智力岛路&河东路与岙东路,汇智桥与智力岛路&河东路与聚贤桥路,火炬路与聚贤桥路&新悦路与岙东路,火炬路与聚贤桥路&河东路与岙东路,火炬路与聚贤桥路&河东路与聚贤桥路,火炬路与聚贤桥路&汇智桥与智力岛路,火炬路与聚贤桥路&火炬路与汇智桥路
蓝鲁BP9G39,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
蓝鲁B7M827,1,23,0,1,0,0,2,55,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
蓝鲁BQ3M79,0,11,0,0,0,0,1,10,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
蓝鲁BU008P,0,4,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
蓝鲁BW6710,14,0,0,0,0,0,0,0,0,0,0,0,14,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0
蓝鲁BS180G,0,1,0,0,0,0,0,24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
蓝鲁B3HU73,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
代码:
[html] view plain copy
library(fpc)
data<-read.csv('x.csv')
df<-data[2:31]
set.seed(252964)
(kmeans <- kmeans(na.omit(df), 100))
plotcluster(na.omit(df), kmeans$cluster) #作图
kmeans #表示查看聚类结果
kmeans$cluster #表示查看聚类结果
kmeans$center #表示查看聚类中心
write.csv(kmeans$cluster,'100classes.csv') #将聚类的结果写入到文件中
2、R语言关联规则
数据集格式
[plain] view plain copy
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0
0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0
0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0
每列代表一个属性,表示出现这个属性,每行代表记录数
代码如下:
[html] view plain copy
library(arules)
groceries <- read.transactions("groceries.csv")
summary(groceries)
[html] view plain copy
</pre><pre code_snippet_id="1620120" snippet_file_name="blog_20160322_6_7367204" name="code" class="html">/*Apriori算法*/
frequentsets=eclat(Groceries,parameter=list(support=0.05,maxlen=10)) #求频繁项集
inspect(frequentsets[1:10]) #察看求得的频繁项集
inspect(sort(frequentsets,by=”support”)[1:10]) #根据支持度对求得的频繁项集排序并察看(等价于inspect(sort(frequentsets)[1:10])
[html] view plain copy
</pre><pre code_snippet_id="1620120" snippet_file_name="blog_20160322_8_2841846" name="code" class="html">/*Eclat算法*/
[html] view plain copy
<p>rules=apriori(Groceries,parameter=list(support=0.01,confidence=0.01)) #求关联规则</p><p>summary(rules) #察看求得的关联规则之摘要</p><p>x=subset(rules,subset=rhs%in%”whole milk”&lift>=1.2) #求所需要的关联规则子集</p><p>inspect(sort(x,by=”support”)[1:5]) #根据支持度对求得的关联规则子集排序并察看</p><div>
</div>
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27