
1、R语言关于k-means聚类
数据集格式如下所示:
[plain] view plain copy
,河东路与岙东路&河东路与聚贤桥路,河东路与岙东路&新悦路与岙东路,河东路与岙东路&火炬路与聚贤桥路,河东路与岙东路&火炬路与汇智桥路,河东路与岙东路&汇智桥与智力岛路,新悦路与岙东路&火炬路与聚贤桥路,新悦路与岙东路&河东路与聚贤桥路,新悦路与岙东路&河东路与岙东路,新悦路与岙东路&汇智桥与智力岛路,新悦路与岙东路&火炬路与汇智桥路,河东路与聚贤桥路&新悦路与岙东路,河东路与聚贤桥路&火炬路与聚贤桥路,河东路与聚贤桥路&河东路与岙东路,河东路与聚贤桥路&汇智桥与智力岛路,河东路与聚贤桥路&火炬路与汇智桥路,火炬路与汇智桥路&新悦路与岙东路,火炬路与汇智桥路&火炬路与聚贤桥路,火炬路与汇智桥路&汇智桥与智力岛路,火炬路与汇智桥路&河东路与聚贤桥路,火炬路与汇智桥路&河东路与岙东路,汇智桥与智力岛路&新悦路与岙东路,汇智桥与智力岛路&火炬路与聚贤桥路,汇智桥与智力岛路&火炬路与汇智桥路,汇智桥与智力岛路&河东路与岙东路,汇智桥与智力岛路&河东路与聚贤桥路,火炬路与聚贤桥路&新悦路与岙东路,火炬路与聚贤桥路&河东路与岙东路,火炬路与聚贤桥路&河东路与聚贤桥路,火炬路与聚贤桥路&汇智桥与智力岛路,火炬路与聚贤桥路&火炬路与汇智桥路
蓝鲁BP9G39,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
蓝鲁B7M827,1,23,0,1,0,0,2,55,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
蓝鲁BQ3M79,0,11,0,0,0,0,1,10,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
蓝鲁BU008P,0,4,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
蓝鲁BW6710,14,0,0,0,0,0,0,0,0,0,0,0,14,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0
蓝鲁BS180G,0,1,0,0,0,0,0,24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
蓝鲁B3HU73,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
代码:
[html] view plain copy
library(fpc)
data<-read.csv('x.csv')
df<-data[2:31]
set.seed(252964)
(kmeans <- kmeans(na.omit(df), 100))
plotcluster(na.omit(df), kmeans$cluster) #作图
kmeans #表示查看聚类结果
kmeans$cluster #表示查看聚类结果
kmeans$center #表示查看聚类中心
write.csv(kmeans$cluster,'100classes.csv') #将聚类的结果写入到文件中
2、R语言关联规则
数据集格式
[plain] view plain copy
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0
0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0
0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0
每列代表一个属性,表示出现这个属性,每行代表记录数
代码如下:
[html] view plain copy
library(arules)
groceries <- read.transactions("groceries.csv")
summary(groceries)
[html] view plain copy
</pre><pre code_snippet_id="1620120" snippet_file_name="blog_20160322_6_7367204" name="code" class="html">/*Apriori算法*/
frequentsets=eclat(Groceries,parameter=list(support=0.05,maxlen=10)) #求频繁项集
inspect(frequentsets[1:10]) #察看求得的频繁项集
inspect(sort(frequentsets,by=”support”)[1:10]) #根据支持度对求得的频繁项集排序并察看(等价于inspect(sort(frequentsets)[1:10])
[html] view plain copy
</pre><pre code_snippet_id="1620120" snippet_file_name="blog_20160322_8_2841846" name="code" class="html">/*Eclat算法*/
[html] view plain copy
<p>rules=apriori(Groceries,parameter=list(support=0.01,confidence=0.01)) #求关联规则</p><p>summary(rules) #察看求得的关联规则之摘要</p><p>x=subset(rules,subset=rhs%in%”whole milk”&lift>=1.2) #求所需要的关联规则子集</p><p>inspect(sort(x,by=”support”)[1:5]) #根据支持度对求得的关联规则子集排序并察看</p><div>
</div>
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10