京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言中很多包(package)关于神经网络,例如nnet、AMORE、neuralnet以及RSNNS。nnet提供了最常见的前馈反向传播神经网络算法。AMORE包则更进一步提供了更为丰富的控制参数,并可以增加多个隐藏层。neuralnet包的改进在于提供了弹性反向传播算法和更多的激活函数形式。RSNNS则是连接R和SNNS的工具,在R中即可直接调用SNNS的函数命令,在这方面有了极大的扩充。本文使用AMORE包来实现神经网络模型。可使用命令install.packages("AMORE")进行包的安装。
library(AMORE)
#输入一个11*10的矩阵,前8行用来训练,后3行用来预测
p<-matrix(c(6977.93,24647,11356.6,9772.5,1496.92,4279.65,89.84,95.97,9194,0.6068,
7973.37,28534,13469.77,11585.82,1618.27,5271.991,100.28,111.16,9442,0.63,
9294.26,33272,16004.61,14076.83,1707.98,6341.86,117.78,130.22,9660,0.6314,
10868.67,37638,18502.2,16321.46,1790.97,6849.688,134.77,125.56,9893,0.6337,
12933.12,39436,19419.7,18052.59,1855.73,6110.941,86.04,119.81,10130,0.634,
15623.7,44736,23014.53,20711.55,1948.06,7848.961,151.59,187.08,10441,0.6618,
17069.2,50807,26447.38,24097.7,2006.92,9134.673,177.79,202.12,10505,0.665,
18751.47,54095,27700.97,26519.69,2037.88,9840.205,195.18,282.05,10594,0.674,
21169.7,60633.82,31941.45,29569.92,2211.6665,11221.01,205.5601,329.4234,10986.79,0.684065,
23716.17,66750.29,35562.93,32993.75,2317.9223,12486.77,220.3005,398.7751,11245.69,0.694706,
26469.74,73292.95,39458.17,36680.63,2428.5869,13849.68,235.0408,477.4204,11515.33,0.706087),11,10,byrow=T)
#对输入矩阵进行归一化处理(0到1)
b1=(p[,1]-min(p[,1]))/(max(p[,1])-min(p[,1]))
b2=(p[,2]-min(p[,2]))/(max(p[,2])-min(p[,2]))
b3=(p[,3]-min(p[,3]))/(max(p[,3])-min(p[,3]))
b4=(p[,4]-min(p[,4]))/(max(p[,4])-min(p[,4]))
b5=(p[,5]-min(p[,5]))/(max(p[,5])-min(p[,5]))
b6=(p[,6]-min(p[,6]))/(max(p[,6])-min(p[,6]))
b7=(p[,7]-min(p[,7]))/(max(p[,7])-min(p[,7]))
b8=(p[,8]-min(p[,8]))/(max(p[,8])-min(p[,8]))
b9=(p[,9]-min(p[,9]))/(max(p[,9])-min(p[,9]))
b10=(p[,10]-min(p[,10]))/(max(p[,10])-min(p[,10]))
p0=cbind(b1,b2,b3,b4,b5,b6,b7,b8,b9,b10)#归一化后的数据放入矩阵中
#对应矩阵前8行的测试结果集
t<-c(2673.5356,2991.0529,3393.0057,3504.8229,3609.4029,4060.1257,4399.0168,4619.4102)
#第9行的实际结果
t9=4830.1315
#测试结果归一化
t0=(t-min(t))/(max(t)-min(t))
alter=1
count=0
#训练的结果测试第9行若误差在3%之内或者循环20次结束
while(abs(alter)>0.03 && count<20){
#训练网络,n.neurons表示输入的参数,以及隐藏层个数,及输出结果
net<-newff(n.neurons = c(10,10,2,1),learning.rate.global=1e-4, momentum.global=0.05,error.criterium="LMS", Stao=NA, hidden.layer="tansig", output.layer="purelin", method="ADAPTgdwm")
#<span style="line-height: 27.2px; font-family: 'Helvetica Neue', Helvetica, Tahoma, Arial, STXihei, 'Microsoft YaHei', 微软雅黑, sans-serif;">p0[1:8,]表示输入,t0[1:8]表示输出,show.step表示循环次数,n.shows表示满足结果的报告次数</span>
result<-train(net,p0[1:8,],t0[1:8],error.criterium="LMS", report=TRUE, show.step=10000, n.shows=5)
#测试第9行到11行
y<-sim(result$net,p0[9:11,])
#反归一化
y<-y*t[8]
#用第9行来测试训练误差,满足训练误差结束
alter=(y[1]-t9)/t9
count=count+1;
}
count
#输出第9行到11行预测的值
y
#作图
x0<-c(2013,2014,2015)
plot(x0,y,col = "blue",pch = "+")
注:每一行都具有实际含义,代表每一年的参数指标,预测一个值
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27