京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用数据共享和大数据思维挖掘应用系统市场的新商机
随着新经济环境和新商业规则的产生,应用系统用户的业务运作环境和需求也发生了巨大的变化,以前的应用系统产品关注的是企业用户本身内部的业务数据,而现在随着新商业规则的建立,企业的管理范围扩大了,需要协同的业务以及整合的资源也更多了,这就使得数据交互和共享的需求越发的强烈,应用系统厂商如果能变换角度,注重数据共享、业务协同和大数据的创新思维,就可以挖掘出应用系统市场的新商机
企业用户之间的业务需求是一环扣一环的,上下游企业用户在业务链上所产生和交互的业务数据也自然而然的形成了数据链,甲用户的采购订单也许就是乙用户的销售订单;甲用户的发货单的很多信息,乙用户可以作为收货单的输入;甲用户的应付,会对应乙用户的应收,等等等等,现在的企业用户,业务关系的复杂正度已经远远不是单个供应链那么简单了,错综复杂的业务关系更像是供应链网,有巨量的归属不同企业然而又是相互关联的业务数据在供应链网内不停的流动。可是,现在的状况是各个企业用户只是各自维护自己的应用系统,由于业务系统需要在供应链网内交互的业务数据信息不得不在自己的应用系统里多次重复输入,更谈不上供应链网上的业务数据信息共享。这种铁路警察各管一段的业务数据管理方式,既增加了业务数据处理费用,更降低了运作效率。
其实很早以前就有简单的信息共享,比如EDI,但是很多年过去了,好像应用系统之间的信息共享依然是原地踏步,并没有什么显著的变化,也几乎看不到应用系统厂商在这个领域有相关的新产品。即使是同一家应用系统厂商,其产品之间也不能直接实现业务数据的交互和共享,一般都是需要在实施阶段临时开发接口才能实现。不同的应用系统厂商之间的业务数据的交互和共享,更是要费尽周折才能开发调试出来。
应用系统厂商可以从企业用户之间的供应链网着手来分析数据链,为企业用户提供业务数据交互和共享的产品,应用系统厂商首先可以从自身的产品入手,规范产品间业务数据交互和共享标准,研发出数据交互和共享的产品,进而不同应用系统厂商之间共同打造跨厂商产品的业务数据交互和共享规则和标准,为构建全供应链网数据链数据交互和共享创造条件。这不啻又是应用系统厂商的一个新商机,也能真正为企业用户带来更多的便利。
如果能够建立基于供应链网数据链的数据交互和共享机制,那接下来的基于数据链的大数据分析和共享就有了大显身手的可能。一旦应用系统厂商与众多的企业用户达成共识,将业务大数据脱敏,既保护了业务数据的安全,又能保持脱敏大数据与业务的关联,进而可以从不同业务角度进行处理分析,机器学习、深度学习和垂直化的行业特性挖掘之类的应用也不会再面对巧妇难为无米之炊的窘境了。用户就能获得全新视角的业务和行业分析成果。
将企业用户从简单的数据提供者,变成又是提供者,又是分享者,为他们提供大数据的共享和增值服务,他们的参与度自然会大大提高。企业用户也能利用大数据分析的协助,不仅仅是从内部业务数据和自身客户数据,更能从上下游和行业业务以及客户的角度,来整合资源,提高管理和决策效率。进一步满足企业用户的管理和决策需求,提高市场竞争力。
应用系统厂商的众多合作伙伴积累的大数据也是不能忽视的,应用系统厂商如果能够跳出产品层面合作的理念,以大数据合作的新思路来构建合作伙伴生态圈,用大数据分析和增值服务共同为企业客户提供更完善的服务,对应用系统厂商的众多合作伙伴又是一个双赢的局面。
如果能变换角度,从用数据共享和大数据思维的角度去规划产品,做好顶层设计,就能使得应用系统产品的立意更高,整体框架更完善,更贴合新的商业规则,使企业用户协同和共享的业务运作效率更高。数据链应用也能实现数据产生-数据处理-价值提取-数据消费-新数据生产的良性循环。
当然,可能还有更多的角度去寻找应用系统产品的新商机,这里的看法也只是抛砖引玉,希望能有更多基于数据共享和大数据的应用系统新产品问世,引导企业用户享受业务协同和大数据带来的便利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30