京公网安备 11010802034615号
经营许可证编号:京B2-20210330
将大数据变成可管理的数据
大数据是无所不在的,因为它可以提供有价值的洞察力,如果没有它是不可用的。然而,分析大数据集可能会产生问题。首先,大数据是大规模的,有时太大,不能通过常用的分析工具有效地处理。日前,美国麻省理工学院计算机科学与人工智能实验室和以色列海法大学的研究人员已经开发了一个解决方案,将大数据变成可管理的数据。
通常使用诸如低秩近似,奇异值分解,主成分分析和非负矩阵分解的数据分析工具来减少数据集中的变量的数量。不幸的是,在大量大数据集上使用这些工具通常太费时,不实用。
解决这个问题的典型解决方案包括为大数据集找到一个核心集。核心集是大数据的一个子集,用于保留大数据最重要的数学关系。数据分析工具可以更有效地与coreet工作,因为它更小。
如果要进行两个或多个数据分析,则进行查找可能是一个问题,因为从大数据中提取核心集,每个分析工具都有自己唯一的方法。在分析中比较结果,将涉及比较来自不理想的不同核心的结果。研究团队通过开发一种用于提取可由大量常用数据分析工具使用的核心集的通用方法来解决这个问题。
假设工作人员想要识别在一个巨大的文本数据库(如维基百科)中最常出现的主题。低秩近似是一种将完成这项工作的算法,但维基百科数据库非常大,因此,采用低秩近似将花费太长的时间来完成任务。
维基百科数据库有多大?想象一下,在维基百科中每一篇文章都有一行的矩阵或表格,以及在维基百科中出现的每个单词的列。该矩阵将有140万篇的文章和440万列的单词。这是一个约6.2万亿个单元格的表格,平均分配到地球上每个人,每人约为821个单元格。这的确是一个大数据。
研究人员的解决方案使用高级类型的几何知识来将这个巨大的数据集缩减为更易于管理的核心集。想象一下,通过一个二维的具有长和宽的矩形就很容易处理。现在添加第三个维度,深度。也很容易想象这是一个盒子,现在添加第四个维度,时间。我们称之为时空,但它不是那么容易想象。现在添加两个或三个更多的维度,并想象它的外观。
人们无法想象这些多维空间看起来像什么,但是可以采用几何知识描述。为了缩小维基百科矩阵,研究人员使用了一个叫做超循环的多维圆,它有440万个维度,可以表达维基百科中出现的每个单词一个。维基百科中的140万篇文章中的每一篇都表示为这个超循环上的唯一点。
研究人员如何将超循环收缩成更易于管理的东西?维基百科中的440万列单词的每一个都由一个变量表示,维基百科中的每篇文章都由这些440万个变量的唯一的一组值表示。研究者的超循环技术涉及一次获取一篇文章,并找到其440万个变量的一小部分的平均值,例如50个变量。最好保留变量之间的数学关系的平均值可以通过计算表示50个变量或单词的这个小得多的50维超循环的中心来找到。然后将平均值作为coreet中的一个数据点输入。而对每篇文章中的剩余变量(单词)和140万篇文章中的每一篇重复这个过程。
使用此方法将大数据维基百科矩阵缩减为核心集需要大量的单独计算,但每个计算都可以非常快速地执行,因为它只涉及50个变量。其结果是一个核心集,它保留了大数据中存在的重要的数学关系,并且足够小,可以被各种数据分析技术有效地使用。
超循环技术的真正核心在于这种品种。该技术创建了一个核心集,可以被许多数据分析工具使用,这些工具通常应用于计算机视觉,自然语言处理,神经科学,天气预报,推荐系统等。甚至人们可能认为超循环,都是他们所有规则的一环。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27