
分析|如何用大数据服务"武装"你的商业决策
大数据的影响不仅仅体现在技术与制造过程上,同时也体现在管理者对企业的决策思维与过程中。不同于传统的基于经验的决策模式,大数据技术的应用将全面升级企业管理及商业决策的过程,使管理者的决策过程向更智能化、更有据可依的趋势迈进。
数据的爆发引起决策环境的巨变
今天,我们正处于一个数据大爆炸的时代,一方面,互联网的发展源源不断地为企业提供指数增长的数据样本,成为企业管理者决策的强大依据。通过对全面数据样本的分析和整理,大数据驱动的企业决策将最大程度地避免决策者主观情绪的影响,使得决策更加客观准确,规避许多决策误区和风险。另一方面,爆发式增长的数据本身具有体量巨大、种类繁多、价值密度低及产生速度快的特点,数据之间的关系也不再是简单的因果关系而是冗杂的相关关系,企业应用大数据作出决策的成本也相应提高,DT时代的到来,对企业决策者来说既是机遇,也是挑战。
无论如何,大数据参与到商业决策过程中已成为一种不可逆的趋势,如何在这场历史洪流中“顺势而行”,用大数据这把“利器”武装自身及企业,提升决策创新影响力,已成为企业决策者的重要课题。
大数据用于商业决策的难点
在面对一项新兴的颠覆性技术时,往往会出现盲目跟风的现象。许多企业为了顺应时代潮流而“拥抱大数据”,忽略了大数据在用于商业决策中的难点部分。
首先,企业独立获取真正的“大”数据的成本过高。实现大数据支撑决策的基础是全面的数据采集,而对于大多数企业来说,这往往是难度巨大的。再进一步,随着数据规模变得越来越庞大,企业的数据存储能力也在经受挑战,企业在添置云服务及Hadoop分布计算平台等方面将付出一笔很大的支出。因此在决策前期,企业往往趋向于寻求专业大数据企业的帮助,如利用此前由中译语通发布的“译见”大数据分析平台进行数据搜集及处理,节省开发成本。
总而言之,在利用大数据做出决策之前,数据的采集、传输、建模存储、查询分析、可视化等多个环节中所涉及的技术与人员成本高昂,一旦企业相关投入跟不上,其所获得的大数据就难言完整。而不完整的大数据不仅不能为企业决策提供帮助,反而可能起到误导的作用。
“译见”大数据平台成决策者助力
舍恩伯格在《大数据时代》一书中写到:“大数据是一种资源和工具,它的目的应限定为告知,而不是解释。”因此,在企业决策这件事上,还是要从决策者需求出发,而不是从大数据出发。由企业决策者提出对大数据的需求,再把从数据收集到处理的一系列高难度任务交给专业的大数据服务提供商,而最终再将“解释”的权利回归决策者的手中,才是让大数据参与商业决策的最佳途径。
为满足企业管理者的这一需求,“译见”以平台化的产品模式为企业提供专业的大数据服务,使大数据不再是企业决策的“奢侈品”,而成为各企业常规化的决策工具。基于全球领先的自然语言处理技术、大数据和人工智能技术,“译见”平台可为决策者呈现覆盖全球所有主流国家和地区的实时与历史数据,并通过先进的数据分析模型和可视化处理技术,化繁为简,用自动化、专业的大数据服务解放企业中的生产力,让管理者在战略远见与商业洞察方面获得更强有力的支撑,让大数据真正成为商业决策的利器。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02