
SPSS筛选聚类变量
聚类分析是常见的数据分析方法之一,主要用于市场细分、用户细分等领域。利用SPSS进行聚类分析时,用于参与聚类的变量决定了聚类的结果,无关变量有时会引起严重的错分,因此,筛选有效的聚类变量至关重要。
案例数据源:
在SPSS自带数据文件plastic.sav中记录了20中塑料的三个特征,分别是tear_res(抗拉力)、gloss(光滑度)、opacity(透明度),相关经验表面这20中塑料可以分为3个种类,如果用这三个变量进行聚类,请判断和筛选有效聚类变量。
一套筛选聚类变量的方法
一、盲选
将根据经验得到的、现有的备选聚类变量全部纳入模型,暂时不考虑某些变量是否不合适。本案例采用SPSS系统聚类方法。对话框如下:
统计量选项卡:聚类成员选择单一方案,聚类数输入数字3;
绘制选项卡:勾选树状图;
方法选项卡:默认选项,不进行标准化;
保存选项卡:聚类成员选择单一方案,聚类数输入数字3;
二、初步聚类
这是盲选得到的初步聚类结果,并且在数据视图我们可以看到已经自动生成了一个聚类结果变量,这个变量非常有用。
三、方差分析
是不是每一个纳入模型的聚类变量都对聚类过程有贡献?利用已经生成的初步聚类结果,我们可以用一个单因素方差分析来判断分类结果在三个变量上的差异是否显著,进而判断哪些变量对聚类是没有贡献的。
分析——比较均值——单因素方差分析:
选项选项卡:勾选均值图
由方差分析我们很明确的得知,纳入模型的三个聚类变量,其中只有“透明度”指标在各个分类上有显著的差异,也就是说分类有效果,让每个分类的差异很大,而两外两个变量则在三个分类上没有显著差异,没有很好的类别区分度,所以,我们可以认为,这两个变量对聚类无作用或者无贡献,可考虑踢出模型。
我们还想从可视化的角度来查看和判断,单因素方差分析为我们提供了均值图,可惜,这三个图却最容易误导我们的判断,因为spss在自动生产均值图时为每一个变量单独制图,而且分配不同的纵轴坐标,导致每个图看起来都有非常大的差异,从视觉上迷惑我们做出错误的判断。
这里需要改进!
四、均值描述
为改进以上SPSS默认选项的不足之处,我们需要自己生成三个变量在不同类别上的均值,means过程可以帮助到我们。
从数字上来看,抗拉力(6.8、6.7、7.1)、光滑度(9.3、9.4、9.2)两个指标在三个类别上并没有多大的差异,而对聚类有贡献的透明度指标在不同类别上区分度非常明显。
五、多线均值图
克服纵轴刻度的方法是将这三个指标放在同一个坐标轴上进行对比,也就是制作一个多线均值图。
此时,结果已经一目了然了。
综上,我们可以将抗拉力、光滑度两个指标从模型中剔除,只留下透明度一个指标再进行聚类。
我们发现,前后两次聚类的结果一模一样,用一个指标可以代替以前三个指标的进行聚类。
我们这样做的意义何在?如果能将这些整理成为规则,形成经验,那我们就可以不用测量抗拉力和光滑度这两个指标了,你不觉得多测量两个指标成本会增加吗?数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26