
SPSS筛选聚类变量
聚类分析是常见的数据分析方法之一,主要用于市场细分、用户细分等领域。利用SPSS进行聚类分析时,用于参与聚类的变量决定了聚类的结果,无关变量有时会引起严重的错分,因此,筛选有效的聚类变量至关重要。
案例数据源:
在SPSS自带数据文件plastic.sav中记录了20中塑料的三个特征,分别是tear_res(抗拉力)、gloss(光滑度)、opacity(透明度),相关经验表面这20中塑料可以分为3个种类,如果用这三个变量进行聚类,请判断和筛选有效聚类变量。
一套筛选聚类变量的方法
一、盲选
将根据经验得到的、现有的备选聚类变量全部纳入模型,暂时不考虑某些变量是否不合适。本案例采用SPSS系统聚类方法。对话框如下:
统计量选项卡:聚类成员选择单一方案,聚类数输入数字3;
绘制选项卡:勾选树状图;
方法选项卡:默认选项,不进行标准化;
保存选项卡:聚类成员选择单一方案,聚类数输入数字3;
二、初步聚类
这是盲选得到的初步聚类结果,并且在数据视图我们可以看到已经自动生成了一个聚类结果变量,这个变量非常有用。
三、方差分析
是不是每一个纳入模型的聚类变量都对聚类过程有贡献?利用已经生成的初步聚类结果,我们可以用一个单因素方差分析来判断分类结果在三个变量上的差异是否显著,进而判断哪些变量对聚类是没有贡献的。
分析——比较均值——单因素方差分析:
选项选项卡:勾选均值图
由方差分析我们很明确的得知,纳入模型的三个聚类变量,其中只有“透明度”指标在各个分类上有显著的差异,也就是说分类有效果,让每个分类的差异很大,而两外两个变量则在三个分类上没有显著差异,没有很好的类别区分度,所以,我们可以认为,这两个变量对聚类无作用或者无贡献,可考虑踢出模型。
我们还想从可视化的角度来查看和判断,单因素方差分析为我们提供了均值图,可惜,这三个图却最容易误导我们的判断,因为spss在自动生产均值图时为每一个变量单独制图,而且分配不同的纵轴坐标,导致每个图看起来都有非常大的差异,从视觉上迷惑我们做出错误的判断。
这里需要改进!
四、均值描述
为改进以上SPSS默认选项的不足之处,我们需要自己生成三个变量在不同类别上的均值,means过程可以帮助到我们。
从数字上来看,抗拉力(6.8、6.7、7.1)、光滑度(9.3、9.4、9.2)两个指标在三个类别上并没有多大的差异,而对聚类有贡献的透明度指标在不同类别上区分度非常明显。
五、多线均值图
克服纵轴刻度的方法是将这三个指标放在同一个坐标轴上进行对比,也就是制作一个多线均值图。
此时,结果已经一目了然了。
综上,我们可以将抗拉力、光滑度两个指标从模型中剔除,只留下透明度一个指标再进行聚类。
我们发现,前后两次聚类的结果一模一样,用一个指标可以代替以前三个指标的进行聚类。
我们这样做的意义何在?如果能将这些整理成为规则,形成经验,那我们就可以不用测量抗拉力和光滑度这两个指标了,你不觉得多测量两个指标成本会增加吗?数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27