京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Hadoop有一个名为“HDFS”的分布式文件系统,它的设计目的是提供一个高容错,且能部署在廉价硬件的分布式系统;它的设计参照了Google的GFS(Google分布式文件系统);它能支持高吞吐量,适合大规模数据集应用。
HDFS上的文件被划分为以固定块大小的多个分块(默认为64MB,如此大是为了最小化寻址开销),每个块作一个独立的存储单元。
这样做有两个好处:第一可以存储容量大于单一磁盘容量的文件;第二大大简化了存储子系统的设计(只需要管理块,而且块的元数据并不需要与块一同存储)。将每个块复制到少数几个独立的机器上(默认为3个),可以确保在块、磁盘或机器发生故障后数据不会丢失(即发现一个块不可用,系统会从其他地方读取另一个复本,同时重新复制该复本到一台正常的机器上)。下图展示了这些特性。
HDFS集群由一个NameNode(管理者)和多个dataNode(工作者)组成。HDFS解决了单点问题,HDFS集群的管理者是非常重要。NameNode管理文件系统的命名空间,它维护着文件系统树及整颗树内所有的文件和目录,同时也记录着每个文件中各个块到DataNode。同时,NameNode(管理者)包含主要节点(Primary)和备份节点(Stand by),如果Primary出现问题,Stand By可自动接替Primary继续工作。DataNode主要负责响应文件系统客户端发出的读写请求,同时还将在NameNode的指导下负责执行文件的创建、删除以及复制。
Hadoop的MapReduce(分布式计算模型)处理框架正是基于HDFS构建,它充分利用集群的并行优势来处理存储在HDFS上的数据文件。一个MapReduce任务在集群上以任务跟踪(TaskTracker)执行。每个TaskTracker被Job监控,当发现一个TaskTracker执行失败是,JobTracker就会将该任务分配到其他机器上运行。
在运行MapReduce作业经常会遇到各种问题,为了能进行必要的优化,理解HDFS原理还是很有必要的。下面介绍比较常见的一种情况:小文件如何拖累MapReduce作业及可采取的优化措施。
在MapReduce作业中,Hadoop将其输入数据划分成等长的小数据块,称为输入分片。Hadoop为每个分片构建一个map任务,或者说每一个map操作只处理一个输入分片。每个分片被划分为若干个记录,每条记录就是一个键值对,map一个接一个地处理记录。输入分片包括自己的大小和存储位置,存储位置供MapReduce系统将map任务尽量放在分片附近,分片大小用于排序分片,以便优先处理最大的分片,从而最小化作业运行时间。
在一般的MapReduce作业中,使用最多的输入数据格式通常是存储在HDFS上的文件。Hadoop自带的FileInputFormat类是所有使用文件作为其数据源实现的基类。它提供两个功能:一个用于指出作业的输入文件位置;一个是输入文件生成分片的实现代码段。
一个文件如果大于HDFS的块大小,那么它会被分割成多个块,存储在不同的位置。如果分片的大小大于HDFS的块大小,那么一个分片就会从不同位置读取,需要通过网络传输到map任务节点,与使用本地数据运行整个map任务相比,这种方法效率更低。另一方面,如果分片切分得太小,那么管理分片的总时间和构建map任务的总时间将决定作业的整个执行时间。因此,对于大多数作业来说,一个合理的分片大小趋向于HDFS的一个块的大小,即64MB。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27