京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Hadoop:一个分布式系统基础架构,由Apache基金会开发,用户可以在不了解分布式底层细节的情况下,开发分布式程序,充分利用集群的威力告诉运算和存储。
Hadoop是项目的总称,主要是由分布式存储(HDFS)、分布式运算(MapReduce)组成。
HIVE是一个SQL解析引擎,它将SQL语句转译成M/RJOB 然后再Hadoop执行,与传统数据库完全不同,只是采用了同样的sql界面。
2、hadoop基本操作
2.1 查看指定目录下内容
Hadoop dfs –ls[文件目录]
如:hadoop dfs –ls /user/war/wangkai.pt
2.2 打开某个已存在的文件
Hadoop dfs –cat [file_path]
如:hadoop dfs –cat /user/war/wangkai.pt/test.txt
2.3 删除某个文件
hadoop fs -rm hdfs://ns4/user/mart_vdp/app.db/app_vdp_jdb_jw_store_task_rules/store_task.txt
2.4 将本地文件存储至hadoop
Hadoop fs –put [本地地址]
3、hive基本操作
3.1 进入hive
登陆hadoop服务器后,输入 hive(这处理的有点慢,多等会)
显示成hive>
>
后,即表示进入到hive中
3.2 hive基本操作
3.2.1 建表
语句:
CREATE [EXTERNAL] TABLE table_name
(col_name data_rype,.....)
[PATTITIONED BY (col_name data_type)]
[ROW FORMAT DELIMITED
[FIELDS TERMINATED BY '/t' ]
[STORED AS TEXTFILE]
举例:
create table input_data_test #表名
( item_sku_id string , #字段名称 字段类型
provider_code string ,
delivery_center string ,
stock bigint )
COMMETN '注释:XXXXX' #表注释
PARTITIONED BY ("ACTIVE") #分区表字段(如果文件非常大的话,采用分区表可以快速过滤出按分区字段划分的数字)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '/t' #字段之间是按照什么分割开的,这个例子是中按照tab键分开,还可以使用其他字符,如|分开
STORED AS TEXTFILE; #用哪种方式存储数据
3.2.2 查看库
语句:show databases;
使用某一个库:use database;
3.2.3 查看表
语句:show tables
可以使用模糊查询:show tables '*TMP*'
查看表有哪些分区: show partitions table;
使用某一个表:use table;
查看表字段:desc table;
3.2.4删除表
Drop table table_name;
3.2.5增加字段:
alter table fdm_cep_ql_service_center_chain add columns (jd_account string);
3.2.6 导入数据
使用load命令将数据导入表中 load操作只是将数据复制/移动至Hive表对应的位置,不会对数据进行任何转换。
语句:
load data [local] inpath 'filepath' [overwrite] into table tablename [partition ]
举例:
load data local inpath '/python/app/task/data/gdm_m03_item_sku_da_06.txt' into table gdm.gdm_m03_item_sku_da;(不带分区)
load data local inpath '/python/app/task/data/no_commission_rules.txt' into table app.app_vdp_nojdb_jw_sku_commission_rules;(带分区)
注:就是普通的insert,只不过数据来源是通过inpath路径找到的,insert之前保证表已建完,并且格式于建表语句要求的格式一致(换行、分隔符等)
3.2.7 查询
1、where 语句
Where语句是个布尔表达式,例如:下面的查询语句只返回销售记录大于10,且归属地属于美国的销售代表。
Select * from sales where amount >10 and region =’US’
注:hive不支持where子句中的IN、EXIST或子查询。
2、基于partition的查询
一般select查询会扫描整个表(除非是为了抽样查询)。但是如果一个表使用partitioned by子句建表,查询就可以利用分区剪枝(input pruning)的特性,只扫描一个表中他关心的那一部分。
Hive当前的是实现是。只有分区断言出现在离from子句最近的那个where子句中,才会取用分区剪枝。
例如,如果表app_vdp_base_jdbang_income_ma_sum使用date列分区,一下语句只会读取分区为‘2016-06-01’的数据。
Select *
from app_vdp_base_jdbang_income_ma_sum
where tx_dt>=’2016-06-01’ and tx_dt <=’2016-06-31’
3、limit查询
Limit可以限制查询的记录数,查询的结果是随机选择的。下边的查询语句从t1表中随机查询5条记录:
Select * from t1 limit 5;
如果需要查询top多少的数据,则需要使用下面的语句:
查询销售记录最大的5个销售代表:
Select * from sales order by amount desc limit 5;
3.2.8 修改数据
Hive不支持update数据。
同时,hive导入数据的时候不会自动去重。
3.2.9 删除数据
Hive不支持条件删除,只能删除整个表后再重新建。
3.2.10 结果导出
在hive中查询出表数据后,如果数据太多,不好看,可以将数据导出来,然后在本地使用UE等工具查看。此命令在在linux下执行
格式:hive –e ‘查询语句’ > 文件名.txt #将查询语句查询出来的结果导出到txt中
例如:
hive - e 'select * from app.app_vdp_jdbang_jwang_xiadan_detail;' > wangsha1.txt
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12