
Hadoop:一个分布式系统基础架构,由Apache基金会开发,用户可以在不了解分布式底层细节的情况下,开发分布式程序,充分利用集群的威力告诉运算和存储。
Hadoop是项目的总称,主要是由分布式存储(HDFS)、分布式运算(MapReduce)组成。
HIVE是一个SQL解析引擎,它将SQL语句转译成M/RJOB 然后再Hadoop执行,与传统数据库完全不同,只是采用了同样的sql界面。
2、hadoop基本操作
2.1 查看指定目录下内容
Hadoop dfs –ls[文件目录]
如:hadoop dfs –ls /user/war/wangkai.pt
2.2 打开某个已存在的文件
Hadoop dfs –cat [file_path]
如:hadoop dfs –cat /user/war/wangkai.pt/test.txt
2.3 删除某个文件
hadoop fs -rm hdfs://ns4/user/mart_vdp/app.db/app_vdp_jdb_jw_store_task_rules/store_task.txt
2.4 将本地文件存储至hadoop
Hadoop fs –put [本地地址]
3、hive基本操作
3.1 进入hive
登陆hadoop服务器后,输入 hive(这处理的有点慢,多等会)
显示成hive>
>
后,即表示进入到hive中
3.2 hive基本操作
3.2.1 建表
语句:
CREATE [EXTERNAL] TABLE table_name
(col_name data_rype,.....)
[PATTITIONED BY (col_name data_type)]
[ROW FORMAT DELIMITED
[FIELDS TERMINATED BY '/t' ]
[STORED AS TEXTFILE]
举例:
create table input_data_test #表名
( item_sku_id string , #字段名称 字段类型
provider_code string ,
delivery_center string ,
stock bigint )
COMMETN '注释:XXXXX' #表注释
PARTITIONED BY ("ACTIVE") #分区表字段(如果文件非常大的话,采用分区表可以快速过滤出按分区字段划分的数字)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '/t' #字段之间是按照什么分割开的,这个例子是中按照tab键分开,还可以使用其他字符,如|分开
STORED AS TEXTFILE; #用哪种方式存储数据
3.2.2 查看库
语句:show databases;
使用某一个库:use database;
3.2.3 查看表
语句:show tables
可以使用模糊查询:show tables '*TMP*'
查看表有哪些分区: show partitions table;
使用某一个表:use table;
查看表字段:desc table;
3.2.4删除表
Drop table table_name;
3.2.5增加字段:
alter table fdm_cep_ql_service_center_chain add columns (jd_account string);
3.2.6 导入数据
使用load命令将数据导入表中 load操作只是将数据复制/移动至Hive表对应的位置,不会对数据进行任何转换。
语句:
load data [local] inpath 'filepath' [overwrite] into table tablename [partition ]
举例:
load data local inpath '/python/app/task/data/gdm_m03_item_sku_da_06.txt' into table gdm.gdm_m03_item_sku_da;(不带分区)
load data local inpath '/python/app/task/data/no_commission_rules.txt' into table app.app_vdp_nojdb_jw_sku_commission_rules;(带分区)
注:就是普通的insert,只不过数据来源是通过inpath路径找到的,insert之前保证表已建完,并且格式于建表语句要求的格式一致(换行、分隔符等)
3.2.7 查询
1、where 语句
Where语句是个布尔表达式,例如:下面的查询语句只返回销售记录大于10,且归属地属于美国的销售代表。
Select * from sales where amount >10 and region =’US’
注:hive不支持where子句中的IN、EXIST或子查询。
2、基于partition的查询
一般select查询会扫描整个表(除非是为了抽样查询)。但是如果一个表使用partitioned by子句建表,查询就可以利用分区剪枝(input pruning)的特性,只扫描一个表中他关心的那一部分。
Hive当前的是实现是。只有分区断言出现在离from子句最近的那个where子句中,才会取用分区剪枝。
例如,如果表app_vdp_base_jdbang_income_ma_sum使用date列分区,一下语句只会读取分区为‘2016-06-01’的数据。
Select *
from app_vdp_base_jdbang_income_ma_sum
where tx_dt>=’2016-06-01’ and tx_dt <=’2016-06-31’
3、limit查询
Limit可以限制查询的记录数,查询的结果是随机选择的。下边的查询语句从t1表中随机查询5条记录:
Select * from t1 limit 5;
如果需要查询top多少的数据,则需要使用下面的语句:
查询销售记录最大的5个销售代表:
Select * from sales order by amount desc limit 5;
3.2.8 修改数据
Hive不支持update数据。
同时,hive导入数据的时候不会自动去重。
3.2.9 删除数据
Hive不支持条件删除,只能删除整个表后再重新建。
3.2.10 结果导出
在hive中查询出表数据后,如果数据太多,不好看,可以将数据导出来,然后在本地使用UE等工具查看。此命令在在linux下执行
格式:hive –e ‘查询语句’ > 文件名.txt #将查询语句查询出来的结果导出到txt中
例如:
hive - e 'select * from app.app_vdp_jdbang_jwang_xiadan_detail;' > wangsha1.txt
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28