
大数据分析不是巨大的负担,而是潜在的黄金
大数据分析是对海量数据的分析技术。大数据时代中,大数据的处理流程包含了数据采集、数据存储、数据分析以及数据挖掘等多个步骤,大数据分析是让无用数据提现价值的关键一步。
大数据分析的特点
大数据分析是利用多种手段从海量数据之中获取智能化、深入化而且更有价值的信息。
大数据分析与数据挖掘有着本质的区别,大数据分析需要大量的数据为基础,而数据量越大算法要求则越低。用于数据分析的数据类型并无固定要求,多为动态增量数据以及存储数据。在技术上,大数据分析技术已经比较稳定,目前不存在太多突破点。
数据挖掘又名资料探勘、数据采矿则是更深层次的理念,其为数据库发现的一个步骤。虽然也需要利用算法从数据中发现信息,但数据挖掘算法与数据大小无关,复杂度较大要求更高;而且数据挖掘需要基于结构化处理后的数据进行,其算法需要不断探索和演进。
大数据分析帮数据提现价值
由于大数据存在5V的特点,即数据量大(Volume)、速度快(Velocity)、类型多(Variety)、价值(Value)和真实性(Veracity)。这些特性的存在再加上大数据不断增长的复杂性,必须要有可靠的分析方法来剥离无用数据的干扰,寻找到有价值的关键信息。
大数据分析的方法
大数据分析最常见的方法有五种,可视化分析、数据挖掘算法、预测性分析、语义引擎以及数据质量和数据管理。
可视化分析是让大数据更贴近普通用户的一种手段。大数据分析的最终服务客户一般都是不懂大数据分析的人,对于他们来讲,大数据分析最重要也是最基础的就是可视化分析。借助可视化分析,普通用户可以直观的洞悉大数据特点,简单获取大数据分析成果。可视化分析降低了大数据分析的门槛,也增加了大数据的适用性。
大数据分析的方法
数据挖掘算法是大的数据分析的理论核心。数据挖掘算法基于各种不同类型和格式的数据进行深度挖掘,让数据体现出本身所具有的特点。其可以深入数据内部,挖掘出最具有公共价值的部分。而且,数据挖掘算法使得大数据处理的速度得到了质的提升,在保障大数据时效性的同时将结论尽早的提供给用户。
预测性分析是大数据分析最重要的应用领域之一。大数据的最终目标之一是进行市场及行为预测,帮助企业或个人用户能够把握相关领域动向。预测性分析正式利用大数据中挖掘出的特点,建立相应的数据模型,然后把新的数据代入模型,预测未来的数据。
数据建模 合理预测
语义引擎被用来应对非结构化数据多元化给数据分析带来的挑战。当前大数据的增长速度达到了一个新高度,其中绝大多数的数据是非结构化数据,传统分析工具拿非结构化数据束手无策的情况下,基于人工智能的语义引擎可以从数据中主动提取有效信息,提炼数据数据后进行分析会更为快捷有效。
高质量的数据和管理是大数据分析中不可或缺的一部分。在大数据分析中,一般会采用数据仓库进行管理,多维分析及多角度展示的数据按照特定模式进行存储并建立关系型数据库,无论在学术研究还是商业应用领域都能够保障分析结果的真实性和价值。
大数据分析还有很多方法,其最终目的是实现数据价值,利用大数据分析的手段让大数据不再是巨大的负担,而是潜在的黄金。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28