
SPSS详细操作:正态转换的多种方法
一、正偏态分布资料
1、轻度正偏态分布
偏度值>0,偏度值为其标准误差的2-3倍,即Z-score=2~3,此时认为资料分布呈现轻度的正偏态分布,可以考虑对变量x取根号开平方的方法来进行转换。
SPSS语句如下:
COMPUTE x_new = SQRT(x)
(SQRT为开平方根Square Root缩写)
2、中度正偏态分布
偏度值>0,偏度值为其标准误差的3倍以上,即Z-score>3,此时认为资料分布呈现中度的正偏态分布,可以考虑对变量x取对数来进行转换。可以取自然对数(ln)或以10为底的对数(log10)。
SPSS语句如下:
COMPUTE x_new = LN(x)
COMPUTE x_new = LG10(x)
注意:LG10的纠正力度较强,有时甚至会矫枉过正,将正偏态转换为负偏态,因此在进行正态转换后一定要对该变量再次进行正态性检验。
3、重度正偏态分布
对于两端波动比较大的数据资料,极端值可能产生较大的影响,此时可以考虑取倒数的方法来进行转换。
SPSS语句如下:
COMPUTE x_new = 1/x
注意:根号下要求数据均为非负数(即≥0),对数要求数据均为正数(即>0),取倒数要求分母不为0, 如果变量x中出现上述情况,则需要先将其进行一定的转换,如x+K或K-x,再对其取根号、对数或倒数。其中K为一个常数,可以根据需要进行赋值,例如赋值为1,或取数据的最小值、最大值等。
二、负偏态分布资料
对于负偏态分布的数据资料,首先需要将负偏态资料进行反转,转换为正偏态,然后再参考正偏态分布资料的转换方法进行转换。
反转的方法:首先找出该数据系列的最大值max,用最大值+1,再减去每个数值
1、轻度负偏态分布
SPSS语句如下:
COMPUTE x_new = SQRT(max+1-x)
2、中度负偏态分布
SPSS语句如下:
COMPUTE x_new = LN(max+1-x)
COMPUTE x_new = LG10(max+1-x)
3、重度负偏态分布
SPSS语句如下:
COMPUTE x_new = 1/(max+1-x)
三、SPSS操作:函数转换法
以分析某人群甘油三酯(TG)的分布特征为例。
1、对TG分布进行正态性检验
采用上期介绍的Explore方法:Analyze→Descriptive Statistics→Explore
结果显示:偏度值为1.314>0,峰度值为1.596>0,偏度Z-score=1.314/0.172 = 7.640>3,Kolmogorov–Smirnov和Shapiro-Wilk检验P值均<0.001,从直方图也可以直观的看出TG在该人群中的分布呈现中度正偏态分布特征。
2、对TG进行正态转换
根据以上正态性检验结果,拟采用取对数的方法进行正态转换,以Log10为例。
(1) 选择Transform → Compute Variable
(2) 在Target Variable框中输入一个新的变量名,作为数据转换后的变量名,此处设定为TG_new
(3) 在Function group中选择Arithmetic,在Functions and Special Variables中双击Lg10,此时在Numeric Expression框中显示LG10(?)
(4) 从变量列表中双击TG,此时在Numeric Expression框中显示LG10(TG)
(5) 点击OK完成操作
3、对转换后的TG_new再次进行正态性检验
(1) 在结果输出的Descriptives表格中显示,偏度值为0.204≈0,峰度值为-0.338≈0,偏度Z-score=0.204/0.172=1.186<1.96,提示服从正态分布。
(2) 在结果输出的Tests of Normality表格中显示,Kolmogorov-Smirnov和Shapiro-Wilk检验P值分别为0.200和0.272,均>0.05,提示服从正态分布。
(3) 从直方图和Q-Q图也可以直观的看出,转换后的TG_new服从正态分布。
四、SPSS操作:正态得分法
对于初学者在初学时无法很好掌握数据资料分布特征的情况下,SPSS提供了一种通过计算正态得分的方法来实现正态转换。
1、操作过程
选择Transform→Rank Cases,将TG选入Variable(s)框中
点击Rank Type选项框,取消默认勾选的Rank,勾选Normal scores选项
在Proportion Estimation Formula下有4种方法可供选择,默认Blom方法,其他方法也可以进行尝试。点击OK完成操作。
2、结果解读
程序运行后在变量列表中多出了一个名为NTG的新变量,即为计算的正态得分,采用Explore方法对NTG进行正态性检验以验证转化效果。
(1) 在结果输出的Descriptives表格中显示,偏度值为0.001≈0,峰度值为-0.124≈0,偏度Z-score=0.001/0.172=0.006<1.96,提示服从正态分布。
(2) 在结果输出的Tests of Normality表格中显示,Kolmogorov-Smirnov和Shapiro-Wilk检验P值分别为0.200和1.000,均>0.05,提示服从正态分布。
(3) 从直方图和Q-Q图也可以直观的看出,转换后的NTG服从正态分布。
五、注意事项
1、不是任何非正态数据都可以进行正态转换,若有把握认为数据的总体分布是正态的时候才可以去做正态转换。如果通过变量转换的方法依然无法将数据转化为正态分布的话,就不再适用于T检验、方差分析等方法了,此时可以应用前期介绍过的非参数检验的方法来进行分析,例如Wilcoxon检验和Mann-Whitney U检验方法等。
2、在进行T检验、方差分析等方法时,要求每组数据均呈正态分布,因此当出现某一组数据正态,另一组数据非正态时,需要对两组数据同时进行转换。
3、在进行相关分析或线性回归时,要求变量间存在线性关系,如果因变量与某个自变量之间呈现出曲线趋势,此时转换的变量可以是自变量,也可以是因变量,或者两者均可。如果进行了变量变换,则应当重新绘制散点图,以保证线性趋势在变换后仍然存在。
4、在对线性回归模型进行解释时,如果使用函数转换的方法对变量进行了转换,则解释时应按照转换后的变量给予解释,或者可以根据转换时使用的函数关系,倒推原始自变量对原始因变量的效应大小。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10