
0基础搭建Hadoop大数据处理-环境
由于Hadoop需要运行在Linux环境中,而且是分布式的,因此个人学习只能装虚拟机,本文都以VMware Workstation为准,安装CentOS7,具体的安装此处不作过多介绍,只作需要用到的知识介绍。
VMware的安装,装好一个虚拟机后利用复制虚拟机的方式创建后面几个虚拟机,省时省力,需要注意的是需要修改每个虚拟机的IP与主机名。
所有虚拟机采用NAT模式上网,而且要保证与物理主机的IP互相能访问。
需要注意的几个问题。nat如果上网首先需要查看物理机(pc机)这个服务器已经启动。上网的原理:流量是走的物理网卡,但是它的ip,却是和物理机没有关系的。也就是说,无论你怎么更换网络环境,你的虚拟机都不需要做改变。这就是它的优点。
首先在安装VMware 之后,我们会看到多了两个网卡
这个如果经过网络配置的折磨,应该能找到着两个网卡:vmnet1和vmnet8,这里讲的是vmnet8。
重点看右侧第三图你会看到ip地址,这个ip地址,因个人而异,也就是说不同网络,不同环境,这个ip变化的概率是很大的。可能是192.168.0.1等等。这里也相当于我们编程的一个变量,这里是需要你根据你的环境来赋值的,建议vmnet1到vmnet8分别设置192.168.10.1到192.168.80.1,好作区分。
上面我们通过看到的虚拟机网卡的ip,为了避免混肴,上面的虚拟网卡和本地网络适配器处于同一界面。如下图
而下面则是在打开虚拟机之后,通过菜单弹出
弹出之后,我们在看一下虚拟机的(交换机)vmnet8.
可以看到vmnet8子网ip和虚拟机网卡是出于同一个网段的。
同时在右侧net设置界面,我们可以看到网关为:192.168.106.2,改成192.168.80.2 虚拟机的设置会用到。
Linux基础知识
Linux的学习也是一个过程,因为可能你连最简单的开机和关机命令都不会,更不要谈配置网络。这里面给大家提供刚开始学习所查阅的资料和经验总结。
首先我们需要使用一些命令,进行网络配置,但是在网络配置中,这里面又必须懂得虚拟机的一些知识,所以前面的虚拟机知识需要掌握扎实一些。
在此注意CentOS7与CentOS6的命令有些不同,会一些常用命令是必备,每次开机或启动解压安装授权都是最基本的知识,其它的可以暂时不用学。
具体常用命令可参考 常备Linux命令
CentOS中安装java环境
下载对应32或64位jdk,设置好JDK环境变量PATH,具体的配置可自行Google。
环境准备
修改机器名,每个系统中都要修改成这样。
打开终端,切换到root用户下修改机器名称。
$ sudo su
$ vim /etc/sysconfig/network
在其中添加“HOSTNAME=H32”
添加每个服务器IP对应的机器名
三个ip地址都添加到各自的/etc/hosts文件中
每个系统中都要修改成这样
#编辑hosts vim /etc/hosts
关闭SELinux
#编辑 SELinux 配置文件 vim /etc/selinux/config #改状态 SELINUX=disabled
SSH设置
进入H30,查看ssh是否安装,如果有,继续,没有安装下。
关于ssh的安装参考 :
如何实现两台服务器间无密码的传输数据和操作
时间服务器安装
这里需要安装时间服务器,其他的服务器通过这个来进行多机器时间的同步,分布式部署时机器时间不一致会导致数据错误或组件内通讯错误。
安装httpd服务
httpd是Apache超文本传输协议(HTTP)服务器的主程序。被设计为一个独立运行的后台进程,它会建立一个处理请求的子进程或线程的池。
安装yum-utils
yum install yum-utils 用于在线yum安装 它是基於RPM包管理,能够从指定的服务器自动下载RPM包并且安装,可以自动处理依赖性关系,并且一次安装所有依赖的软体包,无须繁琐地一次次下载、安装。yum提供了查找、安装、删除某一个、一组甚至全部软件包的命令,而且命令简洁而又好记。(需要机器能访问外网)
准备资源和环境
下载Centos 7.2 的iso安装镜像,jdk1.8 for Linux压缩包,hadoop2.7.3压缩包(本来用hadoop3,发现后面不兼容hive的最新版本)
Java基础知识
由于Hadoop框架源码都是以java来写,因此最好都以java作为开发的最佳语言,虽然说有些用C#做了封装,但性能已大打折扣。(这就是为什么说Java的学大数据有很大的优势,其它语言的还需要重新学习Java)
Eclipse IDE使用
Linux和Windows下源码编译技术
还有最重要的是你的网速要好,因为安装过程中会下载依赖包,网不好会卡到你怀疑人生。
最后还需要有耐心,每台机子的环境都不一样,而且每个人下载的包的版本也有可能不一样 会导致各种问题,此时就需要耐心的去看日志,不停的尝试和仔细的对比安装步骤,可能就是少了个变量 或大小写错误或是要重启。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28