
0基础搭建Hadoop大数据处理-环境
由于Hadoop需要运行在Linux环境中,而且是分布式的,因此个人学习只能装虚拟机,本文都以VMware Workstation为准,安装CentOS7,具体的安装此处不作过多介绍,只作需要用到的知识介绍。
VMware的安装,装好一个虚拟机后利用复制虚拟机的方式创建后面几个虚拟机,省时省力,需要注意的是需要修改每个虚拟机的IP与主机名。
所有虚拟机采用NAT模式上网,而且要保证与物理主机的IP互相能访问。
需要注意的几个问题。nat如果上网首先需要查看物理机(pc机)这个服务器已经启动。上网的原理:流量是走的物理网卡,但是它的ip,却是和物理机没有关系的。也就是说,无论你怎么更换网络环境,你的虚拟机都不需要做改变。这就是它的优点。
首先在安装VMware 之后,我们会看到多了两个网卡
这个如果经过网络配置的折磨,应该能找到着两个网卡:vmnet1和vmnet8,这里讲的是vmnet8。
重点看右侧第三图你会看到ip地址,这个ip地址,因个人而异,也就是说不同网络,不同环境,这个ip变化的概率是很大的。可能是192.168.0.1等等。这里也相当于我们编程的一个变量,这里是需要你根据你的环境来赋值的,建议vmnet1到vmnet8分别设置192.168.10.1到192.168.80.1,好作区分。
上面我们通过看到的虚拟机网卡的ip,为了避免混肴,上面的虚拟网卡和本地网络适配器处于同一界面。如下图
而下面则是在打开虚拟机之后,通过菜单弹出
弹出之后,我们在看一下虚拟机的(交换机)vmnet8.
可以看到vmnet8子网ip和虚拟机网卡是出于同一个网段的。
同时在右侧net设置界面,我们可以看到网关为:192.168.106.2,改成192.168.80.2 虚拟机的设置会用到。
Linux基础知识
Linux的学习也是一个过程,因为可能你连最简单的开机和关机命令都不会,更不要谈配置网络。这里面给大家提供刚开始学习所查阅的资料和经验总结。
首先我们需要使用一些命令,进行网络配置,但是在网络配置中,这里面又必须懂得虚拟机的一些知识,所以前面的虚拟机知识需要掌握扎实一些。
在此注意CentOS7与CentOS6的命令有些不同,会一些常用命令是必备,每次开机或启动解压安装授权都是最基本的知识,其它的可以暂时不用学。
具体常用命令可参考 常备Linux命令
CentOS中安装java环境
下载对应32或64位jdk,设置好JDK环境变量PATH,具体的配置可自行Google。
环境准备
修改机器名,每个系统中都要修改成这样。
打开终端,切换到root用户下修改机器名称。
$ sudo su
$ vim /etc/sysconfig/network
在其中添加“HOSTNAME=H32”
添加每个服务器IP对应的机器名
三个ip地址都添加到各自的/etc/hosts文件中
每个系统中都要修改成这样
#编辑hosts vim /etc/hosts
关闭SELinux
#编辑 SELinux 配置文件 vim /etc/selinux/config #改状态 SELINUX=disabled
SSH设置
进入H30,查看ssh是否安装,如果有,继续,没有安装下。
关于ssh的安装参考 :
如何实现两台服务器间无密码的传输数据和操作
时间服务器安装
这里需要安装时间服务器,其他的服务器通过这个来进行多机器时间的同步,分布式部署时机器时间不一致会导致数据错误或组件内通讯错误。
安装httpd服务
httpd是Apache超文本传输协议(HTTP)服务器的主程序。被设计为一个独立运行的后台进程,它会建立一个处理请求的子进程或线程的池。
安装yum-utils
yum install yum-utils 用于在线yum安装 它是基於RPM包管理,能够从指定的服务器自动下载RPM包并且安装,可以自动处理依赖性关系,并且一次安装所有依赖的软体包,无须繁琐地一次次下载、安装。yum提供了查找、安装、删除某一个、一组甚至全部软件包的命令,而且命令简洁而又好记。(需要机器能访问外网)
准备资源和环境
下载Centos 7.2 的iso安装镜像,jdk1.8 for Linux压缩包,hadoop2.7.3压缩包(本来用hadoop3,发现后面不兼容hive的最新版本)
Java基础知识
由于Hadoop框架源码都是以java来写,因此最好都以java作为开发的最佳语言,虽然说有些用C#做了封装,但性能已大打折扣。(这就是为什么说Java的学大数据有很大的优势,其它语言的还需要重新学习Java)
Eclipse IDE使用
Linux和Windows下源码编译技术
还有最重要的是你的网速要好,因为安装过程中会下载依赖包,网不好会卡到你怀疑人生。
最后还需要有耐心,每台机子的环境都不一样,而且每个人下载的包的版本也有可能不一样 会导致各种问题,此时就需要耐心的去看日志,不停的尝试和仔细的对比安装步骤,可能就是少了个变量 或大小写错误或是要重启。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13