
大数据的核心价值到底是什么
无论是大数据在农业的应用也好,工业的应用也好,抑或是在金融行业的应用也好,最终都是通过大数据技术来获知事情发展的真相,最终利用这个“真相”来更加合理的配置资源。
具体来说,要实现大数据的核心价值,还需要前两个重要的步骤,第一步是通过“众包”的形式收集海量数据,第二步是通过大数据的技术途径进行“全量数据挖掘”,最后利用分析结果进行“资源优化配置”。
只说概念大家肯定没法直观的理解上面的观点,那就将几个咱们都接触过的例子讲一讲大数据是怎么通过这三步发挥核心价值的?
第一步、通过“众包”产生和收集数据
高德地图、百度地图都有实时路况的功能,但大家有没有想过实时路况的数据是怎么收集的?实际上经过了三个阶段,开始是跟交通口的一些公司合作,获取交通流量监测设备的数据,这个方法缺陷很明显,一个是受制于人,一个是想扩大监测范围就要部署大量设备,费时费力,而且还受法律制约。于是一些专门做路况的公司开始用出租车当浮动车收集数据。但这种办法还是无法覆盖大量的大小路段,随着移动互联网的普及,高德地图的APP能够实时上传大量机动车的速度和位置信息,经过去噪和综合分析,就形成了覆盖率极高的实时路况信息。这就是一个典型的“众包”过程。
严谨一点来说,众包指的是一个公司或机构把过去由员工执行的工作任务,以自由自愿的形式外包给非特定的(而且通常是大型的)大众网络的做法。
大数据的“海量数据”就是由“众包”产生的。广义上,用户的行为数据,各种传感器的数据,也都是“众包”的形式,只要是由过去集中式的产生模式扩散到分布式的模式,都是众包的形式。
第二步、通过“全量数据挖掘”获知“真相”
曾经看过一个视频,通过分析阿里巴巴全年的数据得到的阿里巴巴的世界贸易与全国贸易的趋势。视频中体现的不仅是阿里巴巴集团的运营情况,其实也部分反映了整个中国的经济运行情况。而且这些数据不是通过采样得来的,就是真真切切的“全量数据”。我们再也不用通过“管中窥豹”的形式来推测全局,而是直接通过“上帝视角”来窥视真相。这就是大数据的魅力,我们获得了前所未有的获取真相的能力,而且对于大型互联网公司来说,即使是PB级别的数据分析也是准实时的,我们下一个小时就能够得知上一个小时的全量数据分析结果,这样的能力是前所未有的。
第三步 大数据的核心价值——“资源优化配置”
前段时间,滴滴打车曾通过投票和订单分析的方式得出了北上广深四地的加班大楼排行榜,敝司不幸排名第三,但事实真的是即使加班很晚也很难打到车啊啊!所以滴滴打车更名为“滴滴出行”之后,也抛出了他们伟大的愿景,那就是利用大数据分析实时综合调度“快车”、“专车”、“出租车”、“顺风车”甚至是滴滴巴士的资源,实现全局的交通资源优化。事实也是如此,滴滴的司机们越来越多的需要完成“指派任务”,而不是集中去抢高净值客户。也许对于个别单体来说他们的利益降低了,但全局的资源配置却避免了全局的资源浪费和过度竞争,无疑大大提高了交通资源的使用效率。
所以我们说,基于大数据分析的结果,进行资源优化配置,才是大数据应用的落地点和真正价值。
而“资源优化配置”的价值,又远远超出我们能够想象的层面,在资本寒冬即将来临的大背景下,利用大数据实现资源的高效利用,显得更加重要。广告行业利用DMP、DSP进行广告的精准投放,房地产行业利用大数据分析价值洼地,宜信利用大数据建设征信系统降低坏账率,券商陆续推出大数据基金,全部都是广义的“资源优化配置”的体现。大数据也远远不再停留在学术和“分析现象”的阶段,而是在各行各业实现了落地并发挥着非常非常重要的价值。
我是在互联网广告行业从事程序化购买系统建设的,而这个行业也是大数据最先发挥价值的地方。举个最简单的例子来说明大数据在广告资源优化配置上的作用。
宝洁集团是我们的客户,而宝洁的产品有非常强的用户性别倾向性,护舒宝的广告就应该投给女性,投给男性就是赤裸裸的浪费。而吉列的目标用户就只是男性。之前保洁集团是怎么做广告的?就是海投品牌广告,不分性别的海投,那这个做法在投放之前就已经确切无疑的知道有一半广告费用时浪费的。但没有办法,因为我们没有大数据技术来发掘用户的性别。
而随着DMP(Data Management Platform)技术的不断成熟,越来越多的广告主建立起自己的用户数据中心,可以不断积累客户的各种用户行为,进而判断出用户的性别,再通过DSP(Demand Side Platform)系统定向投放,最终可以为宝洁节省一半的广告预算。
上面的例子正是广告资源的优化配置,事实上DMP系统对用户画像的构建精确程度远超人们的想象,精准投放的各类筛选条件也越来越精细。现在微信支持精确到设备的精准投放,也就是未来完全可能实现精确到每个人终端的精准投放,这都依赖于大数据对于用户行为的挖掘,最终实现整个广告行业的效果提升。
很多同学可能会说大数据的核心是数据挖掘,是分布式存储,是NLP,是深度学习,但这一切其实只是大数据的技术途径,大数据的终极核心价值就在于“资源优化配置”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28