
序贯模型=关联规则+时间因素。
今天下午基本上把通过arulesSequences来进行序列模式挖掘搞明白了,晚上又把arulesSequences中最重要的函数cspade查看了一下。Mark一下。
还是先简单写一个模式挖掘的例子。
1、数据准备
假设数据存放在E盘下的test.txt,而且E盘中的数据为:
1 10 2 C D A F H E
1 15 3 A B C E A F
1 20 3 A B F D C F
1 25 4 A C D F D D
2 15 3 A B F
2 20 1 E
3 10 3 B F
4 10 3 D G H
4 20 2 B F
4 25 3 A G H F
4 30 12 A H H H A F F F A G G G
数据比zaki稍微复杂一些,不过只是多添加了一些个别内容。
2、建模
[html] view plain copy
print?
>x=read_baskets(con="E:/zaki.txt",info=c("sequenceID","eventID","SIZE"))
>s1 <- cspade(x, parameter = list(support = 0.6,maxlen=3), control = list(verbose = TRUE))
>as(s1,"data.frame")
主要就这么三步,就完成了序列模式挖掘。现在需要看一下核心的函数cspade()。
3、cspade函数解释
根据文档,cspade函数结构如下:
[html] view plain copy
print?
cspade(data, parameter = NULL, control = NULL, tmpdir = tempdir())
其实,参数data没啥可说的,就导入transactions类型的数据就可以了。
parameter是设定各种参数,这个还需要认真了解一下。
parameter中,可选的参数有如下几个:
support:0-1之间的一个数值,代表得到的高频序列的最小支持度。
支持度其实是这样计算的:看上面的data中有4个序列,比如我们要计算{A}的支持度,则直接看{A}在4个序列中出现过几次,用次数再除以4就得到了支持度。至于一次订单中出现多少次A,则对序列挖掘是没啥影响的。
maxsize:一个整数值,代表在寻找高频序列的过程中,任意一个序列里面的每一个元素的最多能有几个项。
举个例子, <{D,H},{B,F},{A}> 是我们通过序列挖掘得到的一个序列s,那么序列s包含3个元素element,其中第一个元素又包含2个项item。通过设定maxsize,可以在序列挖掘中设定1对1或多对1的不同挖掘方式。
maxlen:一个整数值,代表挖掘的序列最大可以是多长,也即一个序列最多可以有几个元素。
比如,如果s1 <- cspade(x, parameter = list(support = 0.6,maxlen=2), control = list(verbose = TRUE)) ,那么最终得到的序列可能为: <{D,H},{B}><{A,F,H},{A,F}>
因此,通过maxlen参数可以去挖掘较短的序列。
mingap:一个整数值,确定两个连续的订单之间的最小时间差值,默认为none。
maxgap:一个整数值,确定两个连续的订单之间的最大时间差值,默认为none。
maxwin:一个整数值,确定一个序列中任意两个订单之间的最大时间差值,默认为none。
control其实是对内存了什么的控制,一般用不到,第四个也是用不到。因此,cspade函数主要就parameter的设定。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14