
大数据服务存四疑
大数据时代的到来并不是很突然,但是却让人措手不及。不少企业完全没有做好准备,就已经进入了一个所谓的“数据操控一切”的时期。他们有过恐慌、畏惧,甚至在一些企业的宣传中认为没有跟上大数据的脚步,结果就只有淘汰。可事实真的如此吗?笔者认为,大数据服务,至少有四点还值得怀疑。
数据采集
所谓大数据时代,数据采集是第一步,也是最关键的一步。大数据的采集是利用了多个数据库来接受来自客户端、App、Web以及传感器的数据而获得的。可是这些数据真的可靠吗?
诚然,在互联网企业中,客户终端和网页的数据十分重要。这些数据在确实可以通过数据库来准确获得,但是大数据的特点就是大。一旦遇到客户峰值,如双十一或者春运等,数据采集并发数极高,用户操作和访问同时进行,这就需要大量的数据库才有可能支撑,那么这些资源从何而来?数据库之间的负载均衡如何实现?
其次,数据采集的难题在其他行业中会变的更难。物联网落地至今尚未获得大规模成功,所谓的工业4.0目前依然只是我们想象出来的乌托邦,数据如何采集?采集到的数据如何确保正确性?
再者,涉及到人的服务行业中,数据往往与隐私并存。用户的数据是在变动的, 大数据分析所需的数据却是越多越准的。要确认用户的数据正确性,提高数据分析正确性,则很容易事实上形成对人隐私的侵犯,大数据会不会成为作恶的表现?
数据保值
数据采集的困境和难题可以突破,也确实有一部分公司成功突破。但是,数据采集后的保值问题却成为了更大的难关。
大数据公司偏爱这样宣传“数据是企业最大的财富”,可是企业却很少有能成功使用的。所以现在的企业普遍多了一个爱好——囤数据。那么,数据存储的成本从何而来?随着360个人云盘的倒下,数据存储的成本之高已经超出了很多人的想象,这笔投资真的物有所值?
更可怕的是,由于社会和环境的改变,普遍来讲数据的保质期只有3个月。当数据超过3个月后,其有价值的部分将只剩下10%。也就是说,费劲千辛万苦所采集到的数据将有90%会被淘汰,那么这部分数据要如何甄别?过期的数据真实性要如何判断?数据本身出了问题,分析又如何谈正确性?
数据处理
大数据的大,在于非结构化数据占用空间较多。可是,非结构数据主导时代是无可争议的事实。非结构化数据的价值能为企业所用的有多少呢?企业又能用的了多少呢?
在互联网企业数据库中往往能够得到结构化数据,这部分数据占用空间较小,分析容易,价值较高,因此也得到了用户的青睐。但是,结构化数据存在着其最大的弱点,不易转化。结构化数据的这一特点反而成了一种限制,在未来的发展中很可能会不如非结构化数据。
非结构化数据在大多数行业中都是主流存在,但是其处理难度要比结构化数据高太多。非结构化数据在处理的过程中,分类、检索、处理等方法多种多样,而且,包含信息量巨大,不同方式处理的结果很可能存在较大差异,因此价值虽高,但正确性都可能存疑,那么其产生的价值究竟能有多大呢?
数据应用
大数据经过多层包装处理最终可以得出很多结果,但是数据结果的应用却是个值得商榷的存在。
一般来讲,大数据分析的结果经过可视化等处理之后可以有一个比较直观的呈现。可是,数据的使用却往往是企业高层决策者的专利。而占据了公司绝对主体的企业员工却很少能够直接获取大数据创造的价值。而如果开放数据给全体企业员工,那么数据安全该如何保障呢?
而从成本角度来看,企业百尺竿头更进一步诚然可贵,可是如果大数据分析结果只是一种企业决策者的灵光一现,那么这笔投资真的能比高层培训更有价值吗?对于中小型企业来讲,大数据投资的意义又在哪里呢?所谓的知己知彼又是否真的能让企业百战百胜呢?
结束语
中国在大数据方面的发展形势十分乐观,但是对于企业来讲,每一笔投资都应当让他有所价值。数据的价值呈现可以有很多种,那么大数据是否真的像部分厂商所宣传的那样“数据操控一切”呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09