
利用WEKA编写数据挖掘算法
WEKA是由新西兰怀卡托大学开发的开源项目。WEKA是由JAVA编写的,并且限制在GNU通用公众证书的条件下发布,可以运行在所有的操作系统中。WEKA工作平台包含能处理所有标准数据挖掘问题的方法:回归、分类、聚类、关联规则挖掘以及属性选择。作为数据挖掘爱好者自然要对WEKA的源代码进行分析并以及改进,努力写出自己的数据挖掘算法。
下面着重介绍一下如何利用WEKA编写新的数据挖掘算法:
注意:WEKA的版本有两个版本:稳定版(STABLE)和开发版(DEVELOP),不同WEKA版本与不同JDK的版本匹配,稳定版WEKA3-4的与JDK1.4.2匹配,而开发版WEKA3-5与JDK1.5匹配,WEKA3-5新加入了对数据库的数据连接。稳定版直接下载weka-src.jar文件就行了,而开发版需使用CVS连接到sourceForge下载,:pserver:cvs_anon@cvs.scms.waikato.ac.nz:/usr/local/global-cvs/ml_cvs。本文以稳定版为例。
一、首先从WEKA官方网站(http://www.cs.waikato.ac.nz/ml/weka)下载WEKA程序包。将程序包解压获得weka-src.jar源文件,再将源代码解压缩导入某个JAVA开发工具中(图1),如:JBuilder,Eclipse,Netbeans等。我现在以Netbeans为例。
二、为了不与WEKA中已包含的算法相冲突,最好自己建立一个JAVA包,将自己编写的挖掘算法存放在该包内(图2)。我以建立hzm包为例:
三、在新的包hzm内建立新的java类,然后双击编写数据挖掘算法程序代码,本人以实现ID3算法为例讲解具体操作过程。
再将weka.classifiers.trees下的id3算法复制到新建的ID3类中(这只是演示,当然最好还是自己写新的挖掘算法),修改一下类中提示的错误,保存就行了。
四、编写好新的挖掘算法并不能马上在weka中exlorer模式中看到,还要修改weka.gui包中的GenericObjectEditor.props文件。如:我刚才建立的ID3类在weka.classifiers.hzm包中,就要在GenericObjectEditor.props中的# Lists the Classifiers I want to choose from段后添加weka.classifiers.hzm.ID3,\
五、就可以编译整个weka项目,在选择主类时选择weka.gui.GUIChooser这个类,就可以运行和调试你编写好的算法了,祝大家都能写出优秀的挖掘算法!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10