京公网安备 11010802034615号
经营许可证编号:京B2-20210330
汽车大数据技术在服务数字化领域至少有三大应用前景
过去几年,汽车产业的数字化的发展是不均衡的,整车企业本身的数字化进程非常缓慢,相比之下,消费者对数字化的需求已经在倒逼整车企业加速自己的数字化进程。
本文章论述了汽车大数据技术在服务数字化领域中的三大应用前景
近年来各种后市场的互联网化尝试不断碰壁,这让越来越多纯互联网人深感挫败感,说好的互联网+红利,说好的社交红利呢?在线上碰壁的小伙伴过去一年纷纷转型线下,作为身在其中的从业者,如果不是因为媒体出身、好为人师的恶习难改,我真的不愿在同行高歌猛进的时候泼凉水—看着战术勤奋的对手在战略上犯错其实很爽,比如神州之于滴滴。
前几天我说中心店+社区店模式不靠谱,招致不少人的质疑,这不是我没事找事,是因为有小伙伴的社区店模式没走通,我把自己的思考记录下来,防止自己犯傻。我不喜欢和同行争论产业趋势,真正的创新者,必须独立思考,不从众才有可能独享红利,那种人云亦云的事情,我说不来,也做不来。所以,当要在当地投资有壹手门店的三四线城市维修厂老板都给我介绍他要转型中心店+社区店模式的时候,我是真忍不住要反问两句—这真的靠谱么?
作为理工男,我对技术充满乐观,过去40年,IT技术突飞猛进,作为IT技术的代表,以高精度传感器、移动宽带、卫星导航为代表的大数据技术正在连接越来越多的人和企业,原本这些技术只是让BAT做广告、玩游戏赚到越来越多的钱,但在媒体和游戏的高频用户连接的背后,原本不可预测的人类行为正变得越来越容易预测,行为如果可预测,大数据技术的下一站就是借助算法模型,找到那些可以改变人类群体行为的方法,能够用潜移默化的媒体技术控制群体人群的行为,这远比当下卖广告、卖东西、做游戏更有赚钱前景。
作为后市场从业者,我深深感受到越来越多的保险、后市场、整车企业正义无反顾的冲向数字化这条道路,作为最早数字化的保险行业,也最早行动,这也是过去几年整车行业备受保险行业打击而无计可施的原因—虽然在生产制造领域整车企业已经有丰富的数字化经验,但在服务的数字化方面,保险行业领先整车企业一个时代,技不如人必然挨打。当下,作为整车企业体系里最早接触数字化的媒体公关市场人,正成为整车产业的数字化先锋,数字化转型首先是这些人的转型。遗憾的是,这部分汽车人投身的是汽车研发生产制造营销的数字化,缺乏服务数字化经验让这部分汽车精英也无计可施。
我认为汽车大数据技术在服务数字化领域至少有三大应用前景。
其一是利用大数据技术,实现汽车销售服务从BI商务智能的事后研判,向实时的AI人工智能服务管理转变。这个是我率先提出的概念,也是我和小伙伴正在做的事情,不详细说明,愿闻其详的小伙伴欢迎报名我正在张罗的汽车大数据论坛。对于后市场而言,完全靠人来运营管理,及时吹嘘+互联网,效率也不可能比传统后市场企业更高。我相信BAT的各种大数据洞察能力都将成为未来AI人工智能服务管理的有力支撑。
其二是基于大数据技术对传统保险、销售、服务营销技术的战术优化,这个不仅体现在过份吹嘘的精准广告技术上,更有实战价值的是体现在保险UBI产品上,体现在续保营销优化技术等领域。已经有一些保险公司和汽车经销商在使用这类技术改善自己的营销服务能力。但这些技术的潜力远远没有被发挥出来。我希望接下来的汽车大数据系列论坛能够给更多致力于数字化的保险公司、主机厂、经销商、后市场同仁带来新思路。
其三是基于大数据技术的用户洞察,征信和风险控制是这类大数据技术的核心。对于汽车保险、汽车金融、二手车等高毛利业务,利用大数据技术进行风险控制已经有很多实战案例,我认为这些以Fintech技术未来几年会成为金融公司、主机厂的核心竞争力,现有的技术研发公司未来必然会被金融和产业巨无霸变成私有云服务,没有这些专业服务技术支撑的公司将很难参与竞争。汽车金融、汽车生产制造品牌等上游的高度数字化必然引发下游产业的全面数字化,否则所谓大数据技术都是无源之水、无本之木。
过去几年,汽车产业的数字化的发展是不均衡的,整车企业本身的数字化进程非常缓慢,相比之下,消费者对数字化的需求已经在倒逼整车企业加速自己的数字化进程。一旦作为上游的主机厂加速数字化,这将引发整个产业的全面数字化转型,大数据技术的成熟,正需要一个巨大产业生态来验证它的威力,相比快消品,汽车产业正是最佳试验田。当大多数人涌入已经过剩的线下实体店的时候,如果没有更先进技术来进行效率提升,产业就没有未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07