京公网安备 11010802034615号
经营许可证编号:京B2-20210330
汽车大数据技术在服务数字化领域至少有三大应用前景
过去几年,汽车产业的数字化的发展是不均衡的,整车企业本身的数字化进程非常缓慢,相比之下,消费者对数字化的需求已经在倒逼整车企业加速自己的数字化进程。
本文章论述了汽车大数据技术在服务数字化领域中的三大应用前景
近年来各种后市场的互联网化尝试不断碰壁,这让越来越多纯互联网人深感挫败感,说好的互联网+红利,说好的社交红利呢?在线上碰壁的小伙伴过去一年纷纷转型线下,作为身在其中的从业者,如果不是因为媒体出身、好为人师的恶习难改,我真的不愿在同行高歌猛进的时候泼凉水—看着战术勤奋的对手在战略上犯错其实很爽,比如神州之于滴滴。
前几天我说中心店+社区店模式不靠谱,招致不少人的质疑,这不是我没事找事,是因为有小伙伴的社区店模式没走通,我把自己的思考记录下来,防止自己犯傻。我不喜欢和同行争论产业趋势,真正的创新者,必须独立思考,不从众才有可能独享红利,那种人云亦云的事情,我说不来,也做不来。所以,当要在当地投资有壹手门店的三四线城市维修厂老板都给我介绍他要转型中心店+社区店模式的时候,我是真忍不住要反问两句—这真的靠谱么?
作为理工男,我对技术充满乐观,过去40年,IT技术突飞猛进,作为IT技术的代表,以高精度传感器、移动宽带、卫星导航为代表的大数据技术正在连接越来越多的人和企业,原本这些技术只是让BAT做广告、玩游戏赚到越来越多的钱,但在媒体和游戏的高频用户连接的背后,原本不可预测的人类行为正变得越来越容易预测,行为如果可预测,大数据技术的下一站就是借助算法模型,找到那些可以改变人类群体行为的方法,能够用潜移默化的媒体技术控制群体人群的行为,这远比当下卖广告、卖东西、做游戏更有赚钱前景。
作为后市场从业者,我深深感受到越来越多的保险、后市场、整车企业正义无反顾的冲向数字化这条道路,作为最早数字化的保险行业,也最早行动,这也是过去几年整车行业备受保险行业打击而无计可施的原因—虽然在生产制造领域整车企业已经有丰富的数字化经验,但在服务的数字化方面,保险行业领先整车企业一个时代,技不如人必然挨打。当下,作为整车企业体系里最早接触数字化的媒体公关市场人,正成为整车产业的数字化先锋,数字化转型首先是这些人的转型。遗憾的是,这部分汽车人投身的是汽车研发生产制造营销的数字化,缺乏服务数字化经验让这部分汽车精英也无计可施。
我认为汽车大数据技术在服务数字化领域至少有三大应用前景。
其一是利用大数据技术,实现汽车销售服务从BI商务智能的事后研判,向实时的AI人工智能服务管理转变。这个是我率先提出的概念,也是我和小伙伴正在做的事情,不详细说明,愿闻其详的小伙伴欢迎报名我正在张罗的汽车大数据论坛。对于后市场而言,完全靠人来运营管理,及时吹嘘+互联网,效率也不可能比传统后市场企业更高。我相信BAT的各种大数据洞察能力都将成为未来AI人工智能服务管理的有力支撑。
其二是基于大数据技术对传统保险、销售、服务营销技术的战术优化,这个不仅体现在过份吹嘘的精准广告技术上,更有实战价值的是体现在保险UBI产品上,体现在续保营销优化技术等领域。已经有一些保险公司和汽车经销商在使用这类技术改善自己的营销服务能力。但这些技术的潜力远远没有被发挥出来。我希望接下来的汽车大数据系列论坛能够给更多致力于数字化的保险公司、主机厂、经销商、后市场同仁带来新思路。
其三是基于大数据技术的用户洞察,征信和风险控制是这类大数据技术的核心。对于汽车保险、汽车金融、二手车等高毛利业务,利用大数据技术进行风险控制已经有很多实战案例,我认为这些以Fintech技术未来几年会成为金融公司、主机厂的核心竞争力,现有的技术研发公司未来必然会被金融和产业巨无霸变成私有云服务,没有这些专业服务技术支撑的公司将很难参与竞争。汽车金融、汽车生产制造品牌等上游的高度数字化必然引发下游产业的全面数字化,否则所谓大数据技术都是无源之水、无本之木。
过去几年,汽车产业的数字化的发展是不均衡的,整车企业本身的数字化进程非常缓慢,相比之下,消费者对数字化的需求已经在倒逼整车企业加速自己的数字化进程。一旦作为上游的主机厂加速数字化,这将引发整个产业的全面数字化转型,大数据技术的成熟,正需要一个巨大产业生态来验证它的威力,相比快消品,汽车产业正是最佳试验田。当大多数人涌入已经过剩的线下实体店的时候,如果没有更先进技术来进行效率提升,产业就没有未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04