
“小数据”的统计学
一、小数据来自哪里?
科技公司的数据科学、关联性分析以及机器学习等方面的活动大多围绕着”大数据”,这些大型数据集包含文档、 用户、 文件、 查询、 歌曲、 图片等信息,规模数以千计,数十万、 数百万、 甚至数十亿。过去十年里,处理这类型数据集的基础设施、 工具和算法发展得非常迅速,并且得到了不断改善。大多数数据科学家和机器学习从业人员就是在这样的情况下积累了经验,逐渐习惯于那些用着顺手的算法,而且在那些常见的需要权衡的问题上面拥有良好的直觉(经常需要权衡的问题包括:偏差和方差,灵活性和稳定性,手工特性提取和特征学习等等)。但小的数据集仍然时不时的出现,而且伴随的问题往往难以处理,需要一组不同的算法和不同的技能。小数据集出现在以下几种情况:
企业解决方案: 当您尝试为一个人员数量相对有限的企业提供解决方案,而不是为成千上万的用户提供单一的解决方案。
时间序列: 时间供不应求!尤其是和用户、查询指令、会话、文件等相比较。这显然取决于时间单位或采样率,但是想每次都能有效地增加采样率没那么容易,比如你得到的标定数据是日期的话,那么你每天只有一个数据点。
关于以下样本的聚类模型:州市、国家、运动队或任何总体本身是有限的情况(或者采样真的很贵)。【备注:比如对美国50个州做聚类】
多变量 A/B 测试: 实验方法或者它们的组合会成为数据点。如果你正在考虑3个维度,每个维度设置4个配置项,那么将拥有12个点。【备注:比如在网页测试中,选择字体颜色、字体大小、字体类型三个维度,然后有四种颜色、四个字号、四个字型】
任何罕见现象的模型,例如地震、洪水。
二、小数据问题
小数据问题很多,但主要围绕高方差:
很难避免过度拟合
你不只过度拟合训练数据,有时还过度拟合验证数据。
离群值(异常点)变得更危险。
通常,噪声是个现实问题,存在于目标变量中或在一些特征中。
三、如何处理以下情况1-雇一个统计学家
我不是在开玩笑!统计学家是原始的数据科学家。当数据更难获取时统计学诞生了,因而统计学家非常清楚如何处理小样本问题。统计检验、参数模型、自举法(Bootstrapping,一种重复抽样技术),和其他有用的数学工具属于经典统计的范畴,而不是现代机器学习。如果没有好的专业统计员,您可以雇一个海洋生物学家、动物学家、心理学家或任何一个接受过小样本处理训练的人。当然,他们的专业履历越接近您的领域越好。如果您不想雇一个全职统计员,那么可以请临时顾问。但雇一个科班出身的统计学家可能是非常好的投资。
2-坚持简单模型
更确切地说: 坚持一组有限的假设。预测建模可以看成一个搜索问题。从初始的一批可能模型中,选出那个最适合我们数据的模型。在某种程度上,每一个我们用来拟合的点会投票,给不倾向于产生这个点的模型投反对票,给倾向于产生这个点的模型投赞成票。当你有一大堆数据时,你能有效地在一大堆模型/假设中搜寻,最终找到适合的那个。当你一开始没有那么多的数据点时,你需要从一套相当小的可能的假设开始 (例如,含有 3个非零权重的线性模型,深度小于4的决策树模型,含有十个等间隔容器的直方图)。这意味着你排除复杂的设想,比如说那些非线性或特征之间相互作用的问题。这也意味着,你不能用太多自由度 (太多的权重或参数)拟合模型。适当时,请使用强假设 (例如,非负权重,没有交互作用的特征,特定分布等等) 来缩小可能的假设的范围。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10