
物联网、大数据,通通也得略懂能源
目前,产业界认为物联网与大数据都是未来相当有潜力的产业,很多人老是问未来产业在哪,这就是两个了,有趣的是,这两个产业,通通都跟分布式能源有关。
在这系列当中,我们主要探讨分布式能源的观念与趋势,不过,系列文章里头,我们已经暗示许多次,其实整个能源策略的规划,不只是跟使用能源有关,也不只跟绿能产业有关,还关系到整体经济产业的未来发展,这样说起来好像很抽象,先前我们谈过Google为何买下Nest,以及芬兰的国家产业发展政策等等,现在咱们来谈谈两个当红的话题:“物联网”,以及“大数据”。
物联网,顾名思义,就是日常生活中,原本各自独立运作的设备,通通串联起来;大数据,又叫“海量资讯”,不过,要说明起来,过去的绰号“资料挖矿”可能比较传神,就是利用软体演算方法,在大量的资料中找出你所需的资讯。
例如过去社保卡开办之初,曾有少数不肖诊所,认为社保局不可能一一清查所有资料,心存侥幸,一开始也的确得逞,却不知社保卡IC化以后,社保局可透过分析数据,找到就医状况异常分布情况,就前往搜索,果然发现舞弊情事,结果全数被逮。
目前,产业界认为物联网与大数据都是未来相当有潜力的产业,很多人老是问未来产业在哪,这就是两个了,有趣的是,这两个产业,通通都跟分布式能源有关。
先说起物联网,话说物联网的主要应用之一,就是能源管理,小自照明节能系统,大至整个智慧城市,通通与节能和分布式能源有关。
刚说道Google买下的Nest就正在发展物联网,其中在照明方面,Nest的合作伙伴之一是LIFX
智能LED灯,智能灯不仅彼此连结,也与Nest产品连结,包括Nest Protect
烟雾侦测器,以及Nest智能自动调温器,而有了许多额外功能,例如一旦Nest Protect
烟雾侦测器侦测到家中起火,家中所有的LIFX智能灯都会亮起红色警告,让你马上知道有异状,而当你长期外出,LIFX智能灯还会不时随机亮起,佯装屋内有人以免小偷光顾。这些功能固然很炫,但各家的无线连结智能LED灯,最大的作用还是节能省电,如无人时自动关灯,白天时随阳光调整所需照明等等。
除了智能灯,Nest的合作伙伴还包括奔驰车、惠而浦的传感器能够收集许多资料,包括气温、雨量、风向、风力,空气品质、日照亮度、声音大小,还可以透过人群的行动电话通话量估算附近的人数。
不只芝加哥,全世界有许多城市都有类似的智慧城市计划,包括新加坡、法国巴黎、丹麦哥本哈根、美国迈阿密、爱尔兰都柏林、挪威奥斯陆、西班牙巴塞隆纳、等等城市。
这些城市要智能化有何好处?首先就是节能与能源管理,路灯电网科技可以帮助城市节约能源,在无人时关闭路灯,透过计算交通流量,智能信号与环境监测能纾解壅塞交通、控制空气污染,甚至可协助紧急事故及灾害应变等等。除此之外,智慧城市的发展的重要目标之一,就是借助配合智能电网的智能调控,结合分布式能源,提高能源使用效率与能源安全,减少居民用电与电费开支。
目前,每一个先进国家的城市,都逐渐开始规划、准备发展为智慧城市,可以想见未来有多大的商机,总部位于美国加州旧金山的美国智能电网供应商 Silver Spring Networks Inc.(SSNI),收购法国路灯控制及监控软体公司 Streetlight.Vision,就是看好这样的综合庞大市场 (link is external)。
如果没有分布式能源的观念,不只赚不到能源领域的钱而已,连同物联网的这些广大领域也一并鸦鸦乌。
那大数据又跟分布式能源有什么关系?
澳洲的家户屋顶太阳能蓬勃发展,而这股风潮也要吹到欧洲去。当家家户户都装了屋顶太阳能,为了更有效,更智能的调控,许多人认为必须要在每家装设传感器,随时监控太阳能发电的状况,同时也要监控家中的用电情况,才能完美调配电力,达到最稳定、最有效率的整合。
但是这样一来,就有许多额外的传感器开销,有的厂商认为可结合在太阳能逆变器上,发展智能逆变器,有的则认为如Nest这样的厂商可参与其中,但加州的新创公司Bidgely则认为大数据是解决之道。怎么说?
如果我们先把许多有装各种传感器的家户资料收集起来,那就成了一种“大数据”,Bidgely的软体从中可解析出许多分析公式,然后拿来应用在没有装各种传感器的其他客户,只要有最基本的总发电与用电数据,就能透过从大数据解算出来的公式,倒推回每一个细项,不用一一装设传感器。
装设传感器的家户,可以透过卖资料给Bidgely,回收装设的费用,而其他人则省下装传感器的费用,这么一来,可说是双赢的局面,也是一个大数据应用的良好范例。
今天的能源思考题,想请大家带回去思考的就是,物联网、大数据,以及其他无数的未来产业发展机会,都与分布式能源息息相关,那么,国家若想要有好的经济发展,能源政策可以不积极往分布式能源前进吗?
当一个国家的能源策略与分布式能源背道而驰,同时每天嚷嚷找不到未来产业在哪里,聪明的你一定已经发现:这并不是巧合。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09