
Python中的线性代数运算
这里,为了熟悉Python语言的特性,我们采用一种最原始的方式去定义线性代数运算的相关函数。如果是真实应用场景,则直接使用NumPy的函数即可。
1.向量
创建一个向量
我们可以把Python中的向量理解为有限维空间中的点。
height_weight_age = [70,170,40]
grades = [95,80,75,62]
向量运算
#### 加法定义——两个向量
def vector_add(v,w):
"""add coresponding elements"""
return [v_i + w_i
for v_i,w_i in zip(v,w)]
#### 减法定义
def vector_substract(v,w):
"""substracts coresponding elements"""
return [v_i - w_i
for v_i,w_i in zip(v,w)]
#### 向量加法——多个向量(list of vectors)
####### method 1:
def vector_sum(vectors):
"""sums of all coresponding elements"""
result = vectors[0]
for vector in vectors[1:]:
result = vector_add(result,vector)
return result
######## mothod 2:
def vector_sum(vecotrs):
return reduce(vector_add,vectors)
######## mothod 3:
from functools import partial
vector_sum = partial(reduce,vector_add)
### 向量的数乘运算
def scalar_multiply(c,v):
"""c is a number,v is a vector"""
return [c * v_i for v_i in v]
### 向量的均值运算
def vector_mean(vectors):
"""compute the vector whose i-th element is the mean of
the i-th elements of the input vectors"""
n = len(vecotrs)
return scalar_multiply(1/n,vector_sum())
### 向量的点乘
def dot(v,w):
return sum(v_i * w_i
for v_i,w_i in zip(v,w))
### 向量的平房和
def sum_of_squares(v):
"""v_1*v_1+v_2*v_2+...+v_n*v_n"""
return dot(v,v)
### 向量的模
import math
def magnitude(v):
return math.sqrt(sum_of_squares(v))
### 向量的距离
##### method 1:
def squared_distance(v,w):
""""""
return sum_of_squares(vector_substract(v,w))
##### method 2:
def distance(v,w):
return magnitude(vector_substract(v,w))
##### method 3:
def distance(v,w):
return math.sqrt(squared_distance(v,w))
2.矩阵
矩阵是一个二维的数字集合。我们可以通过列表的列表来表达一个矩阵,这样,内层列表是等长的,并且每个内层列表表达矩阵的一行。
### 定义一个向量
A = [[1,2,3],
[4,5,6]]
B = [[1,2],
[3,4],
[7,8]]
### 获得矩阵的行数和列数
def shape(A):
num_rows = len(A)
num_cols = len(A[0]) if A else 0
return num_rows,num_cols
### 提取某一行
def get_row(A,i):
return A[i]
###提取某一列
def get_column(A,j):
return [A_i[j] # j-th element of row A_i
for A_i in A] # for each row in A
### 定制特殊矩阵生成函数:如单位矩阵
def make_matrix(num_rows,num_cols,entry_fn):
"""return a matrix whose (i,j)-th entry is entry_fn(i,j)"""
return [[entry_fn(i,j)
for j in range(num_cols)]
for i in range(num_rows)]
###
def is_diagonal(i,j):
return 1 if i==j else 0
make_matrix(5,5,is_diagonal)
[[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23