
写论文,没数据?R语言抓取网页大数据
纵观国内外,大数据的市场发展迅猛,政府的扶持也达到了空前的力度,甚至将大数据纳入发展战略。如此形势为社会各界提供了很多机遇和挑战,而我们作为卫生(医学)统计领域的一份子,更要把握好机会。放眼全球,大数据的应用规模仍在持续扩张,几乎每个行业都将目光瞄准了大数据背后的巨大价值。未来五到十年,是我国推进大数据发展的关键时期,打造高效的大数据应用机制和产业链迫在眉睫。
空格根据当前大数据行业发展的分析,我们着手大数据不妨从“可视化数据抓取”开始考虑。这里提到的可视化数据抓取,主要指对互联网网页数据的抓取,这样可以实现大数据应用的平民化。当前我们已经可以通过简易的网页数据抓取工具,对其所需的网页数据进行抓取,如某知名网页数据抓取工具“**采集器”(收费)。已有的互联网数据抓取、处理、分析,挖掘软件,可以灵活迅速地抓取网页上散乱分布的数据信息,并通过一系列的分析处理,准确挖掘出所需数据。这样带来的高效、便捷和平民化是不言而喻的。
空格今天小编作为大数据行业的一员,基于广受欢迎的R软件,给大家介绍如何实现网页数据抓取技术。对,是R!它除了强大的统计分析功能,其网页抓取的能力也是不可小觑的,尤其是Hadley写的R包rvest,可谓把复杂的事情简单化。使用R语言进行网页数据的抓取,最大的优势在于获取数据后强大的数据处理、分析以及可视化功能。
空格下面以rvest包抓取广州的空气质量数据为例进行讲解。
网页数据如下图:
#加载程序包
library(rvest)
#找到要抓取数据的网址
url="http://www.pm25s.com/guangzhou.html"
#解析网址内容
web= read_html(url,encoding="UTF-8")
#截取如上图空气质量数据
aqi=web %>% html_nodes("span") %>% html_text()#注意!很多朋友在这一步会出现乱码的情况
aqi=aqi[8:127]
#将截取的数据整理成数据框
aqi=matrix(aqi,ncol=10,byrow=T)
aqi=data.frame(aqi)
for(i in 1:ncol(aqi)){
aqi[,i]=as.character(aqi[,i])
aqi[,i]=gsub("\"","",gsub("\\n","",aqi[,i]))
}
names(aqi)=aqi[1,]
aqi=aqi[-1,]
aqi
如果一切正常,将会出现如下结果:
空格至此,已经实现了R软件对网页数据的抓取,后续可以对空气质量指数做时间序列以及空间分布的展示,当然上述仅仅是大数据的皮毛,还有很多东西可以探索并拓展。比如,针对网页数据的抓取,若能实现动态实时抓取,才会发挥大数据的价值。
结束
空格学会了上面的小技能,大数据应用不再是单纯的喊喊口号!当然,可以实现网页数据抓取的软件还有很多,比如python、sas、excel等等,有兴趣的朋友可以尽情尝试。美国市场研究公司IDC发布报告显示,全球大数据技术及服务市场在2016年将达238亿美元,激活我国大数据的资产价值,开启大数据新生态的目标仍需社会各界的共同努力!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13