京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言玩数据:数据+算法+计算引擎+知识表达
本文介绍玩数据的四部曲,分别是数据、算法、计算引擎和知识表达。
一、数据
数据的观点,如下:
玩数据首先要拥有数据,”巧妇难为无米之炊“。
业务问题是什么?预期目标是什么?围绕问题和目标所要的数据是什么?这些数据是否拥有,有多长和多宽?如何利用这些数据解决业务问题和实现预期目标?
数据的结构是什么?是结构化的、半结构化还是非结构化的;数据的源头是那些?是业务数据、前端与后端日志数据、第三方数据、埋点收集数据等;数据的类型是是什么?是数字、还是文本、还是音频、图像、视频,甚至是综合体。总之,数据具有多样性
数据的采集极其复杂,也富有挑战性,不仅是源头多样,结构迥异,还有各种“不确定性”的因素。究竟是一窝蜂地记录所有的数据,还是根据不同阶段有针对性地收集和存储数据呢?
数据的商业价值需要通过分析和挖掘,然后以有效地知识表达出来,才能实现“数据变现”或者基于数据创造新的商业模式。
如何从数据中学习到有用的知识,就需要算法+计算引擎+知识表达。
二、算法
算法的观点,如下:
算法是什么?算法就是告诉计算机做事情的步骤与方法,一类算法就是严谨地一步步告诉计算机要做什么以及最后输出什么结果;领一类算法就是通过给计算喂养数据(Data),从Data中学习到有用知识,然后利用这些知识去做预测或者判别的有价值的行动。
算法有其特定的适用场景,那种“一招通吃”的期盼肯定是不现实的。这就注定了面对不同业务问题和数据,要选择适合的算法。换句话说,“天下没有免费的午餐!”
同一问题,面对多种算法处理时,选择那种既能够达到预期效果,又能够简单易用的算法,换句话说,“若无必要,勿增实体!”
三、计算引擎
算法要让计算机来执行,面对各种逻辑弄清楚后,落地就是“计算”了。因此,熟悉常用的计算引擎和选择合适的计算引擎,也是非常重要的。
数据人网的数据技术里面包括R、Python、Hadoop和Spark,实则它们都可以当作一种计算引擎。关于计算引擎的使用,唯一的建议,根据具体的问题选择合适的计算引擎,秉持“不负荷和不浪费”的原则。
四、知识表达
从数据中学习到有用的知识后,知识如何表达呢?或者说,输出的结果怎么表达的?
知识表达观点,如下:
知识表达有多重形式,可以表格化,可以规则化,可以数值化,可以模式化等等。
知识表达的形态可以促进我们对学习过程的理解,对所解决问题进一步认识。
知识表达的方式也决定了我们如何利用知识的方式与方法。
知识表达也是人工智能所研究的一个重要领域。
总结
一个玩数据的人,数据这四部曲,需要花费时间和精力去修炼。庆幸的是,“你不是一个人在奋斗!”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12