
R文本挖掘之tm包
tm包是R文本挖掘方面不可不知也不可不用的一个package。它提供了文本挖掘中的综合处理功能。如:数据载入,语料库处理,数据预处理,元数据管理以及建立“文档-词条”矩阵。
下面,即从tm包提供的各项功能函数的探索出发,一起开始我们的文本挖掘奇幻之旅。
首先,运行下面的几行代码,即可看到介绍tm包的小品文:Introduction to the tm Package:Text Mining in R(https://cran.r-project.org/web/packages/tm/vignettes/tm.pdf).
install.packages("tm")
library(tm)
vignette("tm")
tm包重要函数初探
数据载入及语料库创建
载入数据的格式要求
tm包支持多种格式的数据。用getreaders()函数可以获得tm包支持的数据文件格式。
library(tm)
## Loading required package: NLP
getReaders()
## [1] "readDOC" "readPDF"
## [3] "readPlain" "readRCV1"
## [5] "readRCV1asPlain" "readReut21578XML"
## [7] "readReut21578XMLasPlain" "readTabular"
## [9] "readTagged" "readXML"
载入数据的方式
tm包中主要管理文件的数据结构称为语料库(Corpus),它表示一系列文档的集合。
语料库又分为动态语料库(Volatile Corpus)和静态语料库(Permanent Corpus)。
动态语料库将作为R对象保存在内存中,可以使用VCorpus()或者Corpus()生成。
而动态语料库则作为R外部文件保存,可以使用PCorpus()函数生成。
先来看一下VCorpus()函数的使用。
VCorpus(x, readerControl = list(reader = reader(x), language = "en"))
as.VCorpus(x)
第一个参数x即文本数据来源。对于as.VCorpus()中的x,指定的是一个R对象;对于VCorpus(),可以使用以下几种方式载入x。
DirSource():从本地文件目录夹导入
VectorSource():输入文本构成的向量
DataframeSource():输入文本构成的data frame
对于第二个参数readerControl,即指定文件类型的对应的读入方式。默认使用tm支持的(即getReaders()中罗列的)一系列函数。language即文件的语言类型。似乎不能支持中文。这个问题稍后解释如何解决。
这里,使用tm包自带的一个数据集进行语料库创建的测试。
DirSource()方式:
txt<-system.file("texts","txt",package = 'tm')
(docs<-Corpus(DirSource(txt,encoding = "UTF-8")))
## <<VCorpus>>
## Metadata: corpus specific: 0, document level (indexed): 0
## Content: documents: 5
VectorSource()方式:
docs<-c("this is a text","And we create a vector.")
VCorpus(VectorSource(docs))
## <<VCorpus>>
## Metadata: corpus specific: 0, document level (indexed): 0
## Content: documents: 2
下面,导入一个数据集『冰与火之歌』全五部(没错,我就是来剧透的~~),作为后面练习的例子。
IceAndSongs<-VCorpus(DirSource(directory = "D:/my_R_workfile/RPROJECT/textming/data/IceAndSongs",encoding = "UTF-8"))
数据导出
将语料库导出至本地硬盘上,可以使用writeCorpus()函数.
writeCorpus(IceAndSongs,path = "D:/my_R_workfile/RPROJECT/textming/data/Corpus")
语料库的查看及提取
可以使用print()和summary()查看语料库的部分信息。而完整信息的提取则需要使用inspect()函数。
inspect(IceAndSongs[1:2])
## <<VCorpus>>
## Metadata: corpus specific: 0, document level (indexed): 0
## Content: documents: 2
##
## [[1]]
## <<PlainTextDocument>>
## Metadata: 7
## Content: chars: 1745859
##
## [[2]]
## <<PlainTextDocument>>
## Metadata: 7
## Content: chars: 2018112
文件太大,而没有打印出来。我们可以使用writeLines()函数进行完全打印查看。
writeLines(as.character(IceAndSongs[[1]]))
对于单个文档的提取,可以类型列表取元素子集一样使用 [[ 操作。
identical(IceAndSongs[[1]],IceAndSongs[["冰与火之歌1.txt"]])
## [1] TRUE
数据转换
创建好语料库之后,一般还需要做进一步的处理,如:消除空格(Whitespace),大小写转换,去除停止词,词干化等。
所有的这些处理都可以使用tm_map()函数,通过map的方式将转化函数应用到每一个文档语料上。
消除空格
IceAndSongs<-tm_map(IceAndSongs,stripWhitespace)
去除数字
IceAndSongs<-tm_map(IceAndSongs,removeNumbers)
去除标点符号
IceAndSongs<-tm_map(IceAndSongs,removePunctuation)
大小写转换
IceAndSongs<-tm_map(IceAndSongs,tolower)
消除停止词
tm包中自带了停止词集。
IceAndSongs<-tm_map(IceAndSongs,removeWords,stopwords("english"))
当然,也可以指定你自己设定的停止词集,将stopwords("english")替换成你自己的停止词集对象即可。
词干化
词干化,即词干提取。指的是去除词缀得到词根的过程─—得到单词最一般的写法。
如以单复数等多种形式存在的词,或多种时态形式存在的同一个词,它们代表的其实是同一个意思。因此需要通过词干化将它们的形式进行统一。
tm_map(IceAndSongs,stemDocument)
## <<VCorpus>>
## Metadata: corpus specific: 0, document level (indexed): 0
## Content: documents: 5
去除特殊字符
for(i in seq(IceAndSongs)){
IceAndSongs[[i]]<-gsub("/"," ",IceAndSongs[[i]])
IceAndSongs[[i]]<-gsub("@"," ",IceAndSongs[[i]])
IceAndSongs[[i]]<-gsub("-"," ",IceAndSongs[[i]])
}
过滤
过滤功能能够选择出符合我们需要的文档。
idx<-meta(IceAndSongs,"id") == "冰与火之歌1.txt"
IceAndSongs[idx]
也可以进行全文搜索匹配。如含有”winter is coming”的文档。
tm_filter(IceAndSongs,FUN = function(x){ any(grep("winter is coming",content(x)))})
元数据管理
元数据指的是对文档进行标签化的附加信息。可以通过meta()函数进行元数据管理。
DublinCore()函数提供了一套介于Simple Dublin Core元数据和tm元数据之间的映射机制,用于获得或设置文档的元数据信息。
DublinCore(IceAndSongs[[1]],tag = "creator") <- "R.R.Martin"
DublinCore(IceAndSongs[[1]])
meta(IceAndSongs[[1]])
以上操作示例主要是针对文档级别的元数据管理。而元数据标签其实对应了两个级别:
整个语料库级别:文档的集合
单个文档级别
而文档级别的标签,可以用于文档分类(classification)。
下面演示一下语料库级别的元数据管理。
meta(IceAndSongs,tag = "test",type = "corpus")<-"test meta"
meta(IceAndSongs,type = "corpus")
创建词条-文档矩阵
词条-文档矩阵是一个非常重要的对象,它是后续建立文本分类,文本聚类等模型的基础。
词条-文档矩阵指的是词条作为行,文档标签作为列的稀疏矩阵。当然,也可以建立“文档-词条矩阵”。对应的两个操作函数为:TermDocumentMatrix()和DocumentTermMatrix().
dtm<-DocumentTermMatrix(IceAndSongs)
inspect(dtm[1:5,100:105])
默认情况下,矩阵的元素是词的频率。而我们还有一个重要参数可以设置。可以将矩阵的元素转化为TF-IDF值。
dtm_2<-DocumentTermMatrix(IceAndSongs,
control = list(removePunctuation = TRUE,stopwords = FALSE,weighting =
function(x)weightTfIdf(x,normalize = TRUE)))
inspect(dtm[1:5,10:15])
对文档词条矩阵操作
tm包提供的文档-词条矩阵操作有:词频过滤;词语之间的相关性计算;去除稀疏词等。
findFreqTerms(dtm,10)
findAssocs(dtm,"winter",0.5)
inspect(removeSparseTerms(dtm,0.4))
字典
字典是一个字符集。它可以作为一个控制参数传入DocumentTermMatrix(),从而选择我们需要的词条建立文档-词条矩阵。
inspect(DocumentTermMatrix(IceAndSongs,
list(dictionary = c("winter","power","ice"))))
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27