京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一个案例,告诉你如何灵活的运用ggplot2来制作花样繁多的信息图!
虽然ggplot2的内置图层只有屈指可数的几十个,可是图表组合之后的可能性是无限的。
实际上还是万变不离其宗,就如同使用Excel模仿复杂图表一样,再复杂的图表也是有不同的元素和模块组合起来的,只要能够用心去拆解,都可以找到行之有效的方法。如同庖丁解牛,只要洞悉骨架和经脉,才能随心所欲的下刀。
library("ggplot2")
library("tidyr")
library("dplyr")
library("grid")
library("showtext")
library('"Cairo")
library("scales")
font.add("myfont","msyhl.ttc")
mydata<-read.csv("mydata.csv",stringsAsFactors=FALSE,check.names=FALSE)
mydata$index<-1:nrow(mydata)
mydata$angle1<-1.5*seq(-1,-59)
mydata$angle2<-1.5*seq(59,1)
label<-strsplit(mydata$Country,"")
for (i in 1:length(label)){
label[[i]]<-paste0(label[[i]],collapse="\n")
}
mydata$label<-unlist(label)
mydata$label[37:59]<-gsub("\n","",mydata$label[37:59])
mynewdata<-mydata%>%gather(Class,Value,2:4)
图形一:
mynewdata$Class<-factor(mynewdata$Class,levels=c("环保优先","其他/未回答","经济优先"),order=T)
p1<-ggplot(data=mynewdata,aes(x=index,y=Value,fill=Class))+
geom_bar(stat="identity",width=0.95)+
geom_text(aes(y=105,label=ifelse(index<=36,label,""),angle=angle1),hjust=.5,vjust=0,family="myfont")+
geom_text(aes(y=105,label=ifelse(index>36,label,""),angle=angle2),hjust=0,vjust=0.5,family="myfont")+
geom_text(aes(y=Value,label=Value,angle=angle2),position=position_stack(vjust=.9),family="myfont")+
xlim(0.5,236.5)+ylim(-120,105)+
coord_polar(theta="x")+
guides(fill=guide_legend(title=NULL))+
scale_fill_manual(values=c("#2EA7E0","#B5B5B6","#CBE510"))+
theme(
text=element_text(size=20),
line=element_blank(),
rect=element_blank(),
axis.text=element_blank(),
axis.title=element_blank(),
legend.position=c(.95,.75),
legend.key.size =unit(.8,'cm'),
)
以上可以制作出原始案例的外围圆环图:
mydata2<-data.frame(year=c("1998年","2004年","2009年","2014年"),经济优先=c(.24,.27,.23,.28),未回答=c(.25,.21,.23,.15),环保优先=c(.51,.52,.54,.57),smallyear=rep(.15,4),check.names = FALSE)
names(mydata2)[3]<-"其他/未回答"
mydata2$index<-1:nrow(mydata2)
mynewdata2<-mydata2%>%gather(Class,Value,2:5)
mynewdata2$Class<-factor(mynewdata2$Class,levels=c("smallyear","环保优先","其他/未回答","经济优先"),order=T)
p2<-ggplot(data=mynewdata2,aes(x=index,y=Value,fill=Class))+
geom_bar(stat="identity",width=0.99)+
geom_text(aes(y=Value,label=ifelse(mynewdata2$Class=="smallyear",levels(mynewdata2$year),""),angle=c(rep(0,12),11.25*seq(-1,-7,-2))),position=position_stack(vjust=.5),family="myfont",size=7.5)+
geom_text(aes(y=Value,label=ifelse(mynewdata2$Class!="smallyear",percent(mynewdata2$Value),"")),position=position_stack(vjust=.5),family="myfont",size=6)+
xlim(0.5,16.5)+ylim(-.5,1.25)+
coord_polar(theta="x")+
guides(fill=FALSE)+
scale_fill_manual(values=c("#EFEFEF","#2EA7E0","#B5B5B6","#CBE510"))+
theme(
line=element_blank(),
rect=element_blank(),
axis.text=element_blank(),
axis.title=element_blank(),
legend.position="none"
)
以上可以做出内侧小圆环图:
CairoPNG(file="circletile1.png",width=2000,height=2000)
showtext.begin()
vie<-viewport(width=0.5,height=0.5,x=0.5,y=0.5)
p1;print(p2,vp=vie)
grid.text(label="六成中国人认为\n环境比经济更重要",,x=.99,y=.90,gp=gpar(col="black",fontsize=60,draw=TRUE,just="right")
showtext.end()
dev.off()
合并一步,一幅完整的图表便出炉了!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05