
一个案例,告诉你如何灵活的运用ggplot2来制作花样繁多的信息图!
虽然ggplot2的内置图层只有屈指可数的几十个,可是图表组合之后的可能性是无限的。
实际上还是万变不离其宗,就如同使用Excel模仿复杂图表一样,再复杂的图表也是有不同的元素和模块组合起来的,只要能够用心去拆解,都可以找到行之有效的方法。如同庖丁解牛,只要洞悉骨架和经脉,才能随心所欲的下刀。
library("ggplot2")
library("tidyr")
library("dplyr")
library("grid")
library("showtext")
library('"Cairo")
library("scales")
font.add("myfont","msyhl.ttc")
mydata<-read.csv("mydata.csv",stringsAsFactors=FALSE,check.names=FALSE)
mydata$index<-1:nrow(mydata)
mydata$angle1<-1.5*seq(-1,-59)
mydata$angle2<-1.5*seq(59,1)
label<-strsplit(mydata$Country,"")
for (i in 1:length(label)){
label[[i]]<-paste0(label[[i]],collapse="\n")
}
mydata$label<-unlist(label)
mydata$label[37:59]<-gsub("\n","",mydata$label[37:59])
mynewdata<-mydata%>%gather(Class,Value,2:4)
图形一:
mynewdata$Class<-factor(mynewdata$Class,levels=c("环保优先","其他/未回答","经济优先"),order=T)
p1<-ggplot(data=mynewdata,aes(x=index,y=Value,fill=Class))+
geom_bar(stat="identity",width=0.95)+
geom_text(aes(y=105,label=ifelse(index<=36,label,""),angle=angle1),hjust=.5,vjust=0,family="myfont")+
geom_text(aes(y=105,label=ifelse(index>36,label,""),angle=angle2),hjust=0,vjust=0.5,family="myfont")+
geom_text(aes(y=Value,label=Value,angle=angle2),position=position_stack(vjust=.9),family="myfont")+
xlim(0.5,236.5)+ylim(-120,105)+
coord_polar(theta="x")+
guides(fill=guide_legend(title=NULL))+
scale_fill_manual(values=c("#2EA7E0","#B5B5B6","#CBE510"))+
theme(
text=element_text(size=20),
line=element_blank(),
rect=element_blank(),
axis.text=element_blank(),
axis.title=element_blank(),
legend.position=c(.95,.75),
legend.key.size =unit(.8,'cm'),
)
以上可以制作出原始案例的外围圆环图:
mydata2<-data.frame(year=c("1998年","2004年","2009年","2014年"),经济优先=c(.24,.27,.23,.28),未回答=c(.25,.21,.23,.15),环保优先=c(.51,.52,.54,.57),smallyear=rep(.15,4),check.names = FALSE)
names(mydata2)[3]<-"其他/未回答"
mydata2$index<-1:nrow(mydata2)
mynewdata2<-mydata2%>%gather(Class,Value,2:5)
mynewdata2$Class<-factor(mynewdata2$Class,levels=c("smallyear","环保优先","其他/未回答","经济优先"),order=T)
p2<-ggplot(data=mynewdata2,aes(x=index,y=Value,fill=Class))+
geom_bar(stat="identity",width=0.99)+
geom_text(aes(y=Value,label=ifelse(mynewdata2$Class=="smallyear",levels(mynewdata2$year),""),angle=c(rep(0,12),11.25*seq(-1,-7,-2))),position=position_stack(vjust=.5),family="myfont",size=7.5)+
geom_text(aes(y=Value,label=ifelse(mynewdata2$Class!="smallyear",percent(mynewdata2$Value),"")),position=position_stack(vjust=.5),family="myfont",size=6)+
xlim(0.5,16.5)+ylim(-.5,1.25)+
coord_polar(theta="x")+
guides(fill=FALSE)+
scale_fill_manual(values=c("#EFEFEF","#2EA7E0","#B5B5B6","#CBE510"))+
theme(
line=element_blank(),
rect=element_blank(),
axis.text=element_blank(),
axis.title=element_blank(),
legend.position="none"
)
以上可以做出内侧小圆环图:
CairoPNG(file="circletile1.png",width=2000,height=2000)
showtext.begin()
vie<-viewport(width=0.5,height=0.5,x=0.5,y=0.5)
p1;print(p2,vp=vie)
grid.text(label="六成中国人认为\n环境比经济更重要",,x=.99,y=.90,gp=gpar(col="black",fontsize=60,draw=TRUE,just="right")
showtext.end()
dev.off()
合并一步,一幅完整的图表便出炉了!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23